THE CITY OF BLOOMFIELD

REQUEST FOR PROPOSAL (RFP)

Bergin Lane Reconstruction

RFP# 2024-001 ADDENDUM A

RFP Release Date: March 21, 2024 Addendum Release Date: April 23, 2024

Proposal Due Date: May 6, 2024 @ 1:00 PM MST

If you have questions regarding this RFP please contact: Chief Procurement officer: **Dustie Sheets** Telephone No.: **505-333-7820** Email: <u>dsheets@bloomfieldnm.gov</u>

Bergin Lane Improvement Project

Master Drainage Report

Bloomfield, New Mexico May 25th, 2022

Souder, Miller & Associates

Engineering • Environmental • Geomatics

3500 Sedona Hills Parkway ◆ Las Cruces, NM 88011 575.647.0799 ◆ 800.647.0799 ◆ fax 575.647.0680 ◆ www.soudermiller.com

May 25, 2022,

#7130699

Jason J. Thomas, P.E. Assistant City Manager City of Bloomfield 915 N. 1st St. Bloomfield, New Mexico 87413 *Phone ((505) 333-7816 Email jthomas@bloomfieldnm.gov*

RE: Bergin Lane Improvement Project Master Drainage Report

Dear Mr. Thomas,

Souder, Miller and Associates is pleased to present the enclosed Master Drainage Report for the above reference project. Should any portion of the attached report require modifications to further adhere to your specific needs, please contact our office to schedule a meeting.

Should you have any questions, require any further information, please do not hesitate to contact our office.

Sincerely,

MILLER ENGINEERS, INC. D/B/A SOUDER, MILLER & ASSOCIATES

Douglas W. Mize Jr., PE Project Engineer <u>douglas.mizejr@soudermiller.com</u>

Enc: Bergin Lane Improvement Project Master Drainage Report

XC: Douglas Mize Jr, (douglas.mizejr@soudermiller.com),

DRAINAGE STUDY

BERGIN LANE IMPROVEMENT PROJECT

BLOOMFIELD, NEW MEXICO

Prepared for

CITY OF BLOOMFIELD 915 N. 1st St. Bloomfield, NM 87413

May 25, 2022

This document was prepared under the supervision and direction of the undersigned whose seal as a Professional Engineer, licensed to practice as such in the State of New Mexico, is affixed below.

Douglas W. Mize Jr., P.E. CFM Project Engineer

27427 NMPE Number <u>5/25/2022</u> Date

Tuble of dontents
Table of Contents
1.0 INTRODUCTION
1.1 Introduction1
1.2 Scope of Investigation
1.3 Methodology1
2.0 SITE CHARACTERISTICS
2.1 Climate
2.2 Rainfall
2.3 Terrain
2.4 Level of Flood Risk
3.0 GEOLOGY AND SOIL CHARACTERISTICS
3.1 Geology and Origin of Soil
3.2 Hydrologic Soil Classification
4.0 BASIN DESCRIPTIONS
4.1 General Drainage Characteristics
4.2 Land Use
5.0 HYDROLOGY
5.1 Storm Water Discharge Calculations
5.1.2 T _c calculations9
5.2 50(100)-Year Storm Frequency Event Calculations
6.0 HYDRAULIC ANALYSIS
6.1 Inlet Placement
6.2 Stormwater Network
7.0 CONCLUSION, RECOMMENDATIONS AND LIMITATIONS

Table of Contents

LIST OF APPENDICES

APPENDIX A
BASIN MAPA1
STORMWATER NETWORK MAP
FEMA FIRMETTE MAPS
APPENDIX R
NOAA ATLAS 14 PRECIPITATION FREQUENCY DATA
NRCS SOIL REPORT
CN TABLES
BASIN CURVE NUMBER CALCULATIONS
MANNING ROUGHNESS COEFFICIENT NUMBER REFERENCE
APPENDIX C
TIME OF CONCENTRATION CALCULATIONSC1
PRE-DEVELOPMENT CONDITION REPORTSC17
POST-DEVELOPMENT CONDITION REPORTS
APPENDIX D
ROADWAY FLOW/DISCHARGE DATAD1
CURB INLET FLOW DATA
STORMWATER NETWORK DATA
STORMWATER NETWORK PROFILESD4
SSA PLOT SUMMARY TABLESD6

DRAINAGE REPORT

BERGIN LANE IMPROVEMENT PROJECT BLOOMFIELD, NEW MEXICO

MAY 25, 2022

1.0 INTRODUCTION

1.1 INTRODUCTION

This drainage report has been prepared by Souder, Miller and Associates (SMA) on behalf of the City of Bloomfield. A drainage investigation has been conducted for an area containing +/-27.89 acres which flows through the proposed project, Bergin Lane in Bloomfield, NM. This report will address all findings obtained from the drainage investigation and identify drainage characteristics within the project site. The drainage basins contributing to the proposed project are shown in the basin map in Appendix A.

1.2 Scope of Investigation

The intent of this investigation is to identify drainage characteristics of the pre-development and post-development conditions of the watershed draining through the proposed project. Further discussion of the findings is provided in Section 5.0 and 6.0. The scope of this investigation can be described as follows:

- Identify probable contributing drainage basins that are responsible for conveying runoff flow to the project.
- Perform hydrologic analysis to determine peak discharge rates and runoff volumes within the drainage basins for the 50-year (design storm) and 100-year (check storm), 24-hour frequency storm events for the pre-development and post-development land use conditions.
- Perform hydraulic analysis to create an underground storm sewer network to prevent flooding of the roadway and to route runoff to existing drainage infrastructure.

1.3 METHODOLOGY

This drainage investigation was completed using the methodology outlined in the New Mexico Department of Transportation (NMDOT) Drainage Design Manual, dated July 2018. The calculations for the hydrologic analysis were computed using Autodesk Civil 3D Hydraflow Hydrographs Extension Version 2019.2 (Hydraflow). The hydrologic calculations utilize the Soil Conservation Service (SCS) Unit Hydrograph Method for estimating peak discharges for runoff.

The hydraulic modeling has been performed using Autodesk Inc's Storm and Sanitary Analysis (SSA) Version 2021.3. Calculations of the flow depth and spread along the road were conducted using Bentley System's FlowMaster software version 10.03.00.03 and verified in SSA. Models have been run using steady state flow data to determine peak discharge rates, flow depth, and

flow width through the proposed roadway gutters, curb inlets, and the underground storm sewer network.

2.0 SITE CHARACTERISTICS

2.1 CLIMATE

The City of Bloomfield is located in the eastern section of San Juan County in north-west New Mexico. The climate within the study area is characterized as an arid, continental climate. Distant high mountains shield the area from much precipitation and shallow, cold airmasses in winter. The average mean temperature is 53 degrees F. Temperatures rarely reach 100 degrees F and on average only a few days a year reach temperatures below 0 degrees F. These conditions result in sparce vegetation. The small amount of organic matter produced by vegetation results in soils with a light-colored surface layer with less than 1 percent organic matter. Due to the lack of organic material, there is little ground litter to mitigate raindrop impact which increases runoff potential in the natural condition.

The primary source of moisture for the site originates from storms generated off the Gulf of Mexico from the Bermuda High Pressure area. The frequency and intensity of showers in the summer are less in this area than in most of northern New Mexico. Precipitation totals are slightly greater in the fall with nearly half of annual precipitation falling between July and November. Average annual precipitation in this area is approximately 9.3 inches with an average of 40 thunderstorms per year. Occasional precipitation occurs as a result of an invasion of Pacific Ocean tropical air, typically in the winter months. The precipitation during this time presents as light intensity rain or immeasurable snow because the majority of the precipitation drops on the mountains to the west. The late summer and fall precipitation are brief but heavy thunderstorms. These storms are of short duration and are a result of convective and/or orographic lifting of moist air masses. Following a period of inflow of warm airs, originating from the Gulf of Mexico, are stronger thunderstorms.

2.2 RAINFALL

Precipitation data has been obtained from the National Weather Service's National Oceanic and Atmospheric Administration (NOAA). The average annual rainfall is approximately 9.3 inches with the most severe storms occurring during the months of July through November. Precipitation frequency estimates for the project area are obtained from NOAA's Precipitation Frequency Data Server (Atlas 14, Volume 1, Version 5). The geographical coordinates of the site are Latitude 36.7167° N and Longitude 108.002° W. The NOAA rainfall determination summary for this location is included in Appendix B. The rainfall distribution for the 50-year and 100-year frequency storm events for the 24-hour duration rainfall totals for this site are as follows:

Table 2.1						
Rainfall Summary for 24-hr Storm						
Frequency Storm Event	Rainfall Depth (in)					
50-Year	2.22 inches					
100-Year	2.49 inches					

2.3 TERRAIN

Bergin Lane is located on the western side of Bloomfield, NM near the Junior High School. It intersects U.S. Highway 64 just before mile marker 63 on the south side and West Blanco Boulevard on the north side. Bergin Lane is bound on the east and west sides by agricultural land, residential properties, and the Junior High School. The source of the topographic data used within this report is the United States Geological Survey and consists of 1-foot contour data with an error of up to 30' horizontally. Based on the topographic data, the contributing area has generally mild sloping terrain. Most contributing basins have slopes ranging from 3% to 6% with a small section containing steep slopes up to 17% on a high point just north of the school. The drainage pattern of the site and contributing basins generally flow from the north to the south through the project site where it flows into US Highway 64's stormwater network which eventually discharges to the San Juan River.

2.4 Level of Flood Risk

According to the Federal Emergency Management Agency (FEMA), the project site is located within Flood Zone Designation X. Zone X designation indicates an area of minimal flood risk outside the 1% and 2% annual chance floodplains. The corresponding FIS map number for the project area is Map #35045C1035F effective 8/5/2010. The corresponding FIRMette map for the project is included in Appendix A.

3.0 GEOLOGY AND SOIL CHARACTERISTICS

3.1 Geology and Origin of Soil

The geologic information within the northern half of the study area primarily consists of Fruitland loam which is alluvium derived from sandstone and shale. Its typical profile consists of loam and fine sandy loam. The southern section of the site consists of Stumble sandy clay loam which is derived from sandstone. Its profile consists of sandy clay loam and loamy sand.

3.2 Hydrologic Soil Classification

The Hydraulic Soil Group (HSG) classification throughout the site varies between basins. The basin map can be found in Appendix A. The hydrologic soil classification was determined from the information available from the <u>Soil Survey of San Juan County New Mexico Eastern Part</u>, accessed online via the United States Department of Agriculture Web Soil Survey at http://websoilsurvey.sc.egov.usda.gov/app/WebSoilSurvey.aspx. This information was used to determine the soil classification and properties within the study area. A soil map showing the locations of individual soils withing the project site is found in the NRCS custom soil report in Appendix B.

The following table summarizes the soil map for the study area and provides the hydrologic soil group make up for each subbasin within the study area outside of the roadway. The roadway subbasins have not been included due to their surface treatment.

Table 3.1						
Subbasin Hydrologic Soil Classification						
Subbasin ID		Hydrologic Soil	Group Percentage	e		
Subbasili ID	Group A	Group B	Group C	Group D		
BSN-01	0%	100%	0%	0%		
BSN-02	0%	100%	0%	0%		
BSN-03	0%	100%	0%	0%		
BSN-04	0%	100%	0%	0%		
BSN-05	14.4%	85.6%	0%	0%		
BSN-06	0%	100%	0%	0%		
BSN-07	0%	100%	0%	0%		
BSN-08	0%	100%	0%	0%		
BSN-09	0%	100%	0%	0%		
BSN-10	0%	100%	0%	0%		

The NRCS Web Soil Survey indicates that the soils within the study area mostly consist of soils in HSG B with a minor component of HSG A. This indicates that the soils present have properties of high rates of water transmission and infiltration.

4.0 BASIN DESCRIPTIONS

4.1 GENERAL DRAINAGE CHARACTERISTICS

The contributing watershed to the project site is +/-27.89 acres in area. In the northern sections of the watershed, the basins which flow to the road primarily consist of sheet flow through irrigated farmland and undeveloped natural desert brush. The southern half of the site consists almost entirely of developed structures and parking lots with some bare lawns and desert landscaping. The primary flow regime through the southern section of the site is shallow concentrated flow through curbs, gutters, and small roadside swales. The drainage pattern of the site and contributing basins generally flow from the north to the south through the project site where it flows into the US Highway 64 underground storm sewer network which eventually discharges to the San Juan River.

The contributing offsite basins have been divided into ten basins which flow onto Bergin Lane. These basins have been designated as BSN-1 through BSN-10. The basins have been delineated based on topographic data described in Section 2.3 Terrain, and drainage patterns observed from a visit to the site conducted on March 24th 2022. The basins range in size from 0.80 acres to 9.01 acres.

Bergin Lane itself, the project area, has been divided into 25 basins along the length of the road in accordance with the rules of subbasin delineation outlined in the NMDOT Drainage Design Manual. One of the defining limitations forming the length of these basins within the road is the length to width ratio, which shall not exceed 4:1. These basins within the road have been designated BSN-R1 through BSN-R25. The first four road basins vary in size from 2690 square

feet to 5680 square feet, while the remaining basins are all approximately 4080 square feet in area.

4.2 LAND USE

The pre-development condition of the project area varies depending on the basin. The terrain of basins BSN-1 and BSN-6 consist of mild slopes in irrigated agricultural fields. Basin BSN-5 consists of natural desert shrub in poor hydrologic condition. Each of these basins have a dirt berm along their southern edge which collects all runoff and directs it to Bergin Lane. The remaining basins, BSN-7 through BSN-10, consist primarily of developed land including single family and multi-family lots, a school with associated administration buildings, parking lots, and roads. Minor areas of gravel, desert landscaping, and open space in poor hydrologic condition also exist in the developed land. The vegetation and land use for each basin has been approximated based on aerial imagery and conditions observed from the site visit.

Each road basin consists of the road itself and its ROW including any curbs and sidewalks. In the pre-development condition, the majority of the road basins do not have curbs or sidewalks and consist of a 25 ft road and a bare dirt ROW. Some sections of the road that connect to developed lots like the school buildings and the multi-family lots have a 1.5 ft wide section of curb on the west side of the road. These road sections are found from STA: 3+50 to STA: 4+75, and STA: 17+60 to STA: 23+75. On the north and south ends of Bergin Ln, where it connects to W Blanco Blvd and US HWY 64, the road section contains curb and gutter and 5-foot wide sidewalks on both sides. These road sections are found between STA: 0+00 to STA: 1+25 and STA: 23+75 to STA: 26+16. The following figures illustrate each of the three types of road sections that are found along Bergin Lane in the pre-development condition.

Figure 4.1: STA:1+25 to STA:3+50 & STA:4+75 to STA:17+60

Figure 4.4: STA:1+25 to STA:23+75

Offsite basins continue to flow to Bergin Lane and are captured through inlets. The proposed development will result in all post-development road basins being rated as impervious.

4.3 RUNOFF CURVE NUMBERS

The (SCS) Unit Hydrograph Method estimates run-off using curve numbers (CN). This method incorporates the hydrologic soil group, land use, and hydrologic condition to calculate a weighted curve number, which is used to determine runoff potential. The curve numbers are referenced from the NMDOT Drainage Design Manual, from Tables 402-2 and 402-5, which are included in Appendix B. The following table summarizes the Curve Numbers for land use coverages for each hydrologic soil group.

Curve Number – Soil Type Summary						
Land Use Coverage	Hydrologic Soil Group A	Hydrologic Soil Group B	Hydrologic Soil Group C	Hydrologic Soil Group D		
Road/Parking Lots	98	98	98	98		
Gravel Roads/Lots	76	85	89	91		
Dirt Roads/Compacted Dirt	72	82	87	89		
Open Space (Poor)	68	79	86	89		
Close Seeded SR (Good)	58	72	81	85		
Desert Shrub (Poor)	63	77	85	88		

Tahle	41
Iunic	7.1

Based on the land uses and soil types, the weighted curve numbers for the pre-development	nt
condition of each offsite basin have been calculated and are summarized below:	

Table 4.2					
Pre-Development Offsite Basin Weighted Curve					
Num	bers				
Subbasin ID	Weighted CN				
BSN-1	72				
BSN-2	96				
BSN-3	95				
BSN-4	96				
BSN-5	77				
BSN-6	75				
BSN-7	95				
BSN-8	90				
BSN-9	93				
BSN-10	90				

Similarly, the weighted curve numbers for each pre-development road basin have been calculated and summarized in the following table.

Pre-Development Onsite Basin Weighted Curve Numbers							
Subbasin ID	Subbasin ID Road Stations Description						
R1 - R4,	0+00 - 1+25	Sidewalk & Curb	08				
R24-R25	23+75 - 26+16	(Figure 4.3)	38				
R7,	3+50 - 4+75	Curb on 1 Side	02				
R19 - R23	17+60 - 23+75	(Figure 4.2)	23				
R5 – R6,	1+25-3+50	No Curb or					
R8 - R13,	4+75 – 11+75 Sidewalk HS0		92				
R17 - R18	15 + 25 - 17 + 60	(Figure 4.1)					
		No Curb or					
R14 - R16	11 + 75 - 15 + 25	Sidewalk HSG A	88				
		(Figure 4.1)					

The post-development offsite basin's CN remain unchanged. The post-development road basins are all modeled as CN=98 per the proposed road cross-section.

5.0 HYDROLOGY

Based on the site characteristics and soil characteristics, and basin descriptions detailed in the previous sections, the estimated peak rainfall discharge rates and discharge volumes are obtained for the pre-development and post-development conditions.

5.1 STORM WATER DISCHARGE CALCULATIONS

To calculate the storm water discharge rates and volumes for the 50-year and 100-year storm frequency events, the SCS Unit Hydrograph method was used. This method uses hydrologic data such as the CN and the Time of Concentration (T_c) to determine the peak runoff and volume for the site. The calculations for this analysis were computed using Autodesk's Hydraflow Hydrographs Extension 2021 software package and are found in Appendix C.

The input parameters for the hydrograph calculations were determined using the following criteria:

- The 50-year and 100-year frequency storm event, 24-hour precipitation data is referenced from NOAA's website. The point precipitation frequency estimates for the project area can be found in Appendix B. The Type II-75 storm distribution method developed by NRCS is used.
- Time of concentration (Tc) values are determined using the summation of the Upland Method, Kerby Equation, and Kirpich Equation. These methods were selected based on the anticipated flow regimes estimated from the basin characteristics. The T_c is calculated using the equations presented in the NMDOT Drainage Design Manual. For the Kerby Equation, a retardance coefficient of 0.01 has been chosen for impervious surfaces and a coefficient of 0.2 is used for dirt/vegetated areas. The minimum allowable T_c is 10 minutes. Any calculation resulting in a lower value is set to 10 minutes.

5.1.2 T_c calculations

5.1.2.1 PRE-DEVELOPMENT T_C

The table listed below summarizes the Time of Concentration calculations for the predevelopment conditions of the offsite subbasins. The data includes the subbasin identification, the hydraulic length, the overall subbasin slope, the sheet flow time of concentration calculated with the upland method, overland flow time of concentration calculated with the Kerby equation, the shallow concentrated flow time of concentration calculated with the Kirpich equation, and the total time of concentration which is the sum of the individual travel times in each flow regime.

Table 5.1							
Pre-Development Subbasin Time of Concentration							
Subbasin ID	Total Flow Length (ft)	Overall Slope (ft/ft)	Upland Method, tc (min)	Kerby Equation, t _c (min)	Kirpich Equation, t _c (min)	Total T _c (min)	
BSN-1	526	3.43%	8.94	-	2.40	11.76	
BSN-2	354	4.15%	2.04	-	1.92	3.07	
BSN-3	509	4.41%	3.12	-	2.34	4.43	
BSN-4	421	5.22%	3.36	1.84	-	5.20	
BSN-5	1,405	4.56%	8.7	21.41	-	30.12	
BSN-6	542	5.17%	1.86	13.32	-	15.15	
BSN-7	779	3.03%	4.08	-	3.54	7.61	
BSN-8	407	1.70%	1.38	-	3.54	4.87	
BSN-9	617	1.56%	5.52	-	3.30	8.79	
BSN-10	670	1.84%	3.00	-	4.44	7.48	

Most of the onsite subbasins which make up Bergin Lane are identical in area and longest flow path. All the road basins were calculated to have a T_c less than 10 minutes. Therefore, the minimum T_c of 10 minutes was used for hydrologic calculations and have not been included in the above table.

5.1.2.2 POST-DEVELOPMENT T_C

The change in the land use conditions of the post-development road basins results in runoff flowing through each basin faster than pre-development conditions; however, 10 minutes is the minimum Tc allowable. All post development road basins have been set to 10 minutes. All offsite basin T_c remain the same as the pre-development calculation.

5.2 50(100)-YEAR STORM FREQUENCY EVENT CALCULATIONS

5.2.1 PRE-DEVELOPMENT CONDITIONS

The following table outlines the hydrologic summary of the pre-development condition offsite subbasin calculations for the 50- and 100-year frequency storm event. 100-year frequency storm events are shown in parenthesis. The data includes the subbasin identification, the total area, the calculated Tc, the hydraulic length (also known as the longest flow path), the weighted CN, runoff volume, and the peak discharge.

Table 5.2							
Pre-Development Offsite Subbasins - 50(100)-Year, 24-Hour Event							
Subbasin ID	Area (acres)	Tc (min)	Flow Length (ft)	Weighted CN	50 (100) Volume (ft ³ .)	50 (100) Peak Discharge (cfs)	
BSN-1	2.16	11.8	526	72	1,453 (2,150)	0.31 (0.55)	
BSN-2	1.01	10.0	354	96	4,611 (5,406)	1.65 (1.92)	
BSN-3	1.90	10.0	509	95	8,129 (9,601)	2.95 (3.46)	
BSN-4	0.92	10.0	421	96	4,205 (4,930)	1.51 (1.75)	
BSN-5	9.01	30.1	1405	77	10,990 (15,121)	1.88 (2.83)	
BSN-6	1.59	15.2	542	75	1,461 (2,061)	0.38 (0.60)	
BSN-7	3.96	10.0	779	95	16,898 (19,959)	6.13 (7.19)	
BSN-8	0.80	10.0	407	90	2,422 (2,968)	0.90 (1.10)	
BSN-9	2.48	10.0	617	93	10,168 (12,188)	3.90 (4.65)	
BSN-10	1.97	10.0	670	90	5,987 (7,336)	2.22 (2.82)	

The following table summarizes the hydrologic data for the road subbasins. The data includes the area, flow length, weighted CN, the runoff volume, and the peak discharge.

Table	5.3							
]	Pre-Development Road Subbasins – 50(100)-Year, 24-Hour Event							
Subbasin	Area	Flow Length	Weighted	50 (100)	50 (100) Peak			
ID	(square ft.)	(ft)	CN	Volume (ft ³)	Discharge (cfs)			
R1	4,621.7	260	98	555 (641)	0.19 (0.22)			
R2	5,678.8	117	98	562 (649)	0.19 (0.22)			
R3	2,585.3	121	98	310 (358)	0.11 (0.12)			
R4	3,362.0	189	98	404 (466)	0.14 (0.16)			
R7,	4 080	120	03	350 (419)	0.13 (0.15)			
R19 - R23	4,000	120)5	330 (417)	0.13 (0.13)			
R5 - R13,	4 080	120	02	377 (304)	0.12 (0.15)			
R17 - R18	4,080	120	92	327 (394)	0.12(0.13)			
R14 - R16	4,080	120	88	247 (308)	0.10 (0.11)			
R24	4,080	120	98	490 (566)	0.17 (0.19)			
R25	7,589	120	98	911 (1,052)	0.31 (0.36)			

Each offsite subbasin flows onto the road at certain points along the alignment. Each of these locations has a corresponding analysis point. This runoff then flows along Bergin Lane to the project design point (analysis point 10) at the intersection of US HWY 64. Each analysis point is connected to all upstream flows and is routed to the next analysis point through channels. The channels were modeled based on drainage patterns observed from the site visit and the cross section of roadways obtained from existing as-built plans. The following table summarizes the results at each analysis point for the 50(100)-year, 24-hr frequency storm event. The location of the analysis points is shown on the basin map in Appendix A.

Table 5.4						
Pre-De	Pre-Development Conditions – 50(100)-Year, 24-Hour Event					
	Com	pination Point				
Road	Hydrologic	Peak Discharge on	Peak Discharge on			
Station	Flament ID	West side of Road	East side of Road			
	Liement ID	(cfs)	(cfs)			
STA 2+35	Analysis Point 2	0.23 (0.26)	2.55 (2.91)			
STA 2+85	Analysis Point 1	1.07 (1.52)	2.64 (3.01)			
STA 5+75	Analysis Point 3	5.48 (6.57)	2.73 (3.11)			
STA 5+82	Analysis Point 4	5.57 (6.67)	4.86 (5.53)			
STA 8+08	Analysis Point 6	5.74 (6.87)	5.75 (6.74)			
STA 13+64	Analysis Point 5	7.90 (9.92)	6.17 (7.32)			
STA 18+25	Analysis Point 7	17.03 (20.38)	6.49 (7.61)			
STA 19+05	Analysis Point 8	18.54 (22.15)	6.57 (7.71)			
STA 22+19	Analysis Point 9	23.79 (28.23)	6.84 (8.02)			
STA 25+48	Analysis Point 10	25.23 (28.82)	7.25 (8.24)			

For the 50-year and 100-year, 24-hour storm, the combined peak discharge flowing though the site in the pre-development condition is 32.48 cfs and 37.06 cfs, respectfully.

5.2.2 Post-Development Conditions

In the post-development condition, the land use of the offsite basins remains unchanged. The land use for the road basins also remains the same; however, has a fully developed condition. The post-development data for the road basins are summarized in the following table. The data includes the area, flow length, weighted CN, runoff volume, and peak discharge.

Table	5.5
10000	0.0

Post-Development Road Subbasins – 50(100)-Year, 24-Hour Event						
Subbasin	Area	Flow Length	Weighted	50 (100)	50 (100) Peak	
ID	(square ft.)	(ft)	CN	Volume (ft ³)	Discharge (cfs)	
R1	4621.7	260	98	555 (641)	0.19 (0.22)	
R2	5678.8	117	98	562 (649)	0.19 (0.22)	
R3	2585.3	121	98	310 (358)	0.11 (0.12)	
R4	3362.0	189	98	404 (466)	0.14 (0.16)	
R5 - R24	4080	120	98	409 (566)	0.17 (0.19)	
R25	7589	120	98	911 (1,052)	0.31 (0.36)	

In the same manner as the pre-development condition, Autodesk SSA was used to model the flow from the outlet of each basin through Bergin Lane. Flow through road basins was modeled using channel segments based on the curb and gutter profile of the developed road as seen in Figure 4.4. However, in the post-development condition, curb inlets will be placed along the improved roadway to reduce the runoff on the surface of Bergin Lane. This flow will be routed through a new underground storm sewer network. Additionally, the runoff from basins BSN-1, BSN-3, BSN-6, and BSN-7 will be diverted by area inlets and routed directly to the underground stormwater network. Details of the stormwater network are discussed in section 6.0. For the 50-

year and 100-year, 24-hour storm, the combined peak discharge flowing though the site and the stormwater network in the post-development condition is 33.85 cfs and 39.90 cfs, respectfully.

6.0 HYDRAULIC ANALYSIS

Using the calculated discharge rates and runoff volumes for the post-development road and contributing basins, a hydraulic model was developed to determine the number and location of required curb inlets to minimize surface flow on the road surface for a 50-year, 24-hour storm event and mitigate flooding during the 100-year, 24-hour storm event. An underground stormwater network was designed to connect each of the inlets and route runoff under the road. Analysis of the existing drainage structures at the southern end of Bergin Lane and under US highway 64 was conducted to ensure that the new stormwater network could be connected to the existing system without negative effects.

6.1 INLET PLACEMENT

To mitigate potential flooding and sediment deposition on the road surface, the runoff from offsite basins BSN-1, BSN-3, BSN-6, and BSN-7 will be routed directly to the stormwater network through area inlets. Basins BSN-3 and BSN-7 have existing drainage structures to collect all runoff into a single culvert which discharges into Bergin Lane. Manholes MH-B3 and MH-B7 have been implemented at the outlets of these existing culverts to divert runoff into the underground stormwater network. Manholes MH-B3 and MH-B7 will be 2 ft deep and be connected to the main trunk of the stormwater network with 18-inch dual wall HDPE pipe. Basins BSN-1 and BSN-6 will flow into Inlet-B1 and inlet B6, which are depressed 5 foot x 5 foot inlet grates. These inlet grates will route runoff from their respective basins to the underground storm sewer network. These inlets will be 4 feet deep drop manholes with an 18-inch dual wall HDPE pipe connecting it to the main trunkline. The remaining offsite basins will continue to surface flow onto Bergin Lane. The following Table summarizes the area inlet/manhole data including the rim elevation, the outlet pipe elevation, the manhole/inlet invert elevation, and the peak inflow.

Table 0.1							
Area Inlet Data							
Manhole &	Rim	Outlet	Invert	50 (100)			
Inlet ID	Elevation	Elevation	Elevation	Peak Inflow			
	(ft ASL)	(ft ASL)	(ft ASL)	(cfs)			
MH-B3	5520	5518	5518	4.29 (4.85)			
MH-B7	5468	5466	5466	8.93 (10.08)			
Inlet-B1	5535.5	5533.5	5531.5	0.95 (1.26)			
Inlet-B6	5508.5	5506.5	5504.5	1.32 (1.67)			

Table	61
Tuble	0.1

According to the Drainage Design Manual, the height of water shall not exceed the height of the curb for two lane roads. SMA has further limited the spread of flow to not exceed the height of the crown of the road.

To determine the flowrate at specific locations along Bergin Lane, Autodesk SSA was used to model the hydraulic network. The bypass flows and widths calculated in SSA were verified in

Bentley System's Flowmaster to verify the spread of water across the road. The road cross section was modeled in accordance with the post-development road section shown in figure 4.4.

SMA modeled Neenah Type R_3076_L curb inlets placed on each side of the developed road. The locations of each inlet are placed such that no section of the road would have runoff flow above the road crown for the 100-year, 24-hour storm event. The following table summarizes the curb inlet data including the number of parallel inlet grates, the peak flow at the inlet, the flow intercepted by the inlet, the flow bypassing the inlet, and the max flow width of the water on the road at the inlet.

idle 0.2						
Post-Development 100-year, 24-hour Curb Inlet Data						
Inlet ID	Number	Peak	Flow	Flow	Max Road Spread	
	of Inlet	Inflow	Intercepted	Bypassing	of Flow (ft)	
	Grates	(cfs)	(cfs)	Inlet (cfs)		
CDI-W1	2	5.67	4.67	1.00	10.86	
CDI-W2	1	2.37	1.83	0.53	5.7	
CDI-W3	2	6.61	4.90	1.71	13.83	
CDI 105W	2	3.27	3.27	0.00	9.59	
CDI-E1	1	3.06	1.97	1.09	8.09	
CDI-E2	2	3.76	3.76	0.00	9.2	
CDI-E3	1	1.36	1.36	0.00	3.53	
CDI 105E	2	0.5	0.5	0.00	3.66	
	Inlet ID CDI-W1 CDI-W2 CDI-W3 CDI 105W CDI-E1 CDI-E2 CDI-E3 CDI 105E	Post-DeveInlet IDNumber of Inlet GratesCDI-W12CDI-W21CDI-W32CDI-105W2CDI-E11CDI-E22CDI-E31CDI 105E2	Post-Development 100 Inlet ID Number of Inlet Grates Peak Inflow (cfs) CDI-W1 2 5.67 CDI-W2 1 2.37 CDI-W3 2 6.61 CDI-E1 1 3.06 CDI-E2 2 3.76 CDI-E3 1 1.36 CDI 105E 2 0.5	Post-Development 100-year, 24-hou Inlet ID Number of Inlet Grates Peak Inflow (cfs) Flow Intercepted (cfs) CDI-W1 2 5.67 4.67 CDI-W2 1 2.37 1.83 CDI-W3 2 6.61 4.90 CDI-E1 1 3.06 1.97 CDI-E2 2 3.76 3.76 CDI-E3 1 1.36 1.36 CDI 105E 2 0.5 0.5	Post-Development 100-year, 24-hour Curb Inlet D Inlet ID Number of Inlet Grates Peak (cfs) Flow Intercepted (cfs) Flow Bypassing Inlet (cfs) CDI-W1 2 5.67 4.67 1.00 CDI-W2 1 2.37 1.83 0.53 CDI-W3 2 6.61 4.90 1.71 CDI 105W 2 3.27 3.27 0.00 CDI-E1 1 3.06 1.97 1.09 CDI-E2 2 3.76 3.76 0.00 CDI-E3 1 1.36 1.36 0.00	

Т	ał	ble	6.2	
-	eve		U . 	

The locations of each inlet are shown on the Stormwater Network Map in Appendix A

6.2 Stormwater Network

The underground storm sewer network will connect each of the curb inlets to a central trunkline. This trunkline will consist of 13 manholes with 13 pipe links connecting them. All links within the storm sewer network are proposed to be dual wall HDPE pipe at their specified sized. The storm sewer network is proposed to run underneath Bergin Lane and connects to the existing US HWY 64 storm sewer network. The following table summarizes the data for the manholes within the storm sewer network. The data includes the proposed invert elevation, rim elevation, and the peak inflow calculated within SSA.

Table 6.3						
Stormwater Network Manhole Data						
Manhole ID	Invert	Rim	50 (100)			
	Elevation	Elevation	Peak Inflow			
	(ft ASL)	(ft ASL)	(cfs)			
MH-1	5531.5	5535.5	0.89 (1.26)			
MH-2	5525.29	5530	2.73 (3.21)			
MH-3	5516	5520.4	6.96 (8.06)			
MH-4	5513.68	5518	10.10 (11.82)			
MH-5	5502.75	5508.25	11.29 (13.35)			
MH-6	5491.26	5495.5	11.29 (13.35)			
MH-7	5481.44	5484.9	14.35 (17.37)			
MH-8	5471.42	5474	14.35 (17.37)			
MH-9	5462.98	5467.5	23.16 (27.45)			
MH-10	5460.8	5464.3	24.88 (29.27)			
MH-11	5458.11	5463.75	26.19 (30.76)			
MH-12	5455.59	5459.5	30.83 (35.65)			
MH-13	5452	5453.5	30.83 (35.65)			

The following table summarizes the data for the pipe links within the stormwater network. The data for the pipe links include the Length of pipe, the pipe slope, the diameter of the pipe, the peak flow through the pipe, and the design flow capacity of each pipe calculated within SSA.

Table	6.4
Iunic	U.T

Stormwater Network Pipe Link Data						
Pipe ID	Length (ft)	Slope (%)	Pipe Diameter (in)	50 (100) Peak Flow (cfs)	Design Flow Capacity (cfs)	
Link 1	90.56	6.86	24	0.89 (1.26)	51.35	
Link 2	200.2	4.64	24	2.73 (3.21)	42.23	
Link 3	39.8	5.83	24	6.96 (8.06)	47.34	
Link 4	205.98	5.31	24	10.10 (11.82)	45.18	
Link 5	288.8	3.98	24	11.29 (13.35)	39.11	
Link 6	275.36	3.57	24	11.29 (13.35)	37.04	
Link 7	257.14	3.9	24	14.35 (17.37)	38.72	
Link 8	184.74	4.3	24	14.35 (17.37)	40.66	
Link 9	98.17	2.22	24	23.16 (27.45)	29.21	
Link 10	90.68	2.97	24	24.88 (29.27)	33.79	
Link 11	224.63	1.12	30	26.19 (30.76)	37.62	
Link 12	285.88	1.26	30	30.83 (35.65)	39.9	
Link 13	57.91	1.33	30	30.83 (35.65)	41.0	

The proposed pipe network connects to the existing curb inlet on the east side of the road (CDI-105E) at the southern end of Bergin Lane. This inlet connects to the stormwater network underneath US Highway 64 which continues east for 1,171 ft where it discharges into an open drainage ditch. The proposed stormwater network and the existing network were modeled together in Autodesk SSA. The dimensions and discharge rates of the existing stormwater network were determined from the as-built plans and drainage report of US Highway 64 provided by the New Mexico Department of Transportation. The following table summarizes the data for the existing storm sewer network with the proposed pipe network installed. The data includes the length of pipe, slope, diameter, the peak flow, and the design flow capacity of each pipe calculated within SSA.

US	US HWY 64 Stormwater Network Pipe Link Data (100-Yr)						
Pipe ID	Longth (ft)	Slope	Pipe	Peak Flow	Design Flow		
	Length (It)	(%)	Diameter (in)	(cfs)	Capacity (cfs)		
DS-105A	109	6.52	24	39.90	50.06		
DS-105	273	1.95	30	67.09	67.69		
DS-106	153	0.59	48	72.09	130.4		
DS-107	317	0.5	48	77.09	120.04		
DS-108	171	0.48	48	77.09	117.61		
DS-109	77	0.51	48	82.09	121.23		
DS-110	112	0.49	48	82.09	118.83		
DS-111	68	1.15	48	82.09	182.05		

Table 6.5

According to the analysis conducted within SSA, the existing stormwater network under Highway 64 will be capable of conveying the additional discharge from Bergin Lane.

7.0 CONCLUSION, RECOMMENDATIONS AND LIMITATIONS

From the previously outlined analysis, this drainage report details the pre- and post-development hydrologic conditions for the contributing watershed to Bergin Lane in Bloomfield, New Mexico. The analysis incorporates post-development improvements within Bergin Lane. Furthermore, SMA has determined that the proposed size and locations of inlets will prevent the roadway from being completely inundated during the 100-yr, 24-hr storm event. The designed storm sewer network will allow the runoff from Bergin Lane to be safely conveyed through the existing stormwater network under US Highway 64.

SMA prepared this report specifically for the Bergin Lane Improvement Project. SMA conducted this study using the standard level of care and diligence normally practiced by recognized engineering firms now performing services of a similar nature under similar circumstances. This report, including all illustrations, is intended to be used in its entirety. Any changes that may occur during development of the Construction Drawings will require an analysis to verify that no negative affects arise from said changes.

SMA prepared this report for the exclusive use of the Client and Owner. The purpose is to evaluate the design of the project as it relates to SMA's interpretation of the drainage aspects discussed.

APPENDIX A

VICINITY MAP PRE-DEVELOPMENT BASIN MAP POST-DEVELOPMENT BASIN MAP STORMWATER NETWORK MAP FEMA FIRMETTE MAP

© Copyright 2020 Souder, Miller & Associates - All Rights Reserved

R1 R2 R3 **R**4 R7, R19 - R23 R5 - R13 R17 - R18 R14 - R16 R24 R25

© Copyright 2020 Souder, Miller & Associates - All Rights Reserved

\\192.168.4.10\Projects\7-COB Bergin Ln (7130699)\Drainage\CAD\Stormwater Network Map.dwg 5/25/2022 12:50 PM RTV

National Flood Hazard Layer FIRMette

Legend

250 n

500

1,000

1,500

2.000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

regulatory purposes.

APPENDIX B

NOAA ATLAS 14 PRECIPITATION FREQUENCY DATA

NCRS SOILS SURVEY

CN TABLES

BASIN CURVE NUMBER CALCULATIONS

MANNING ROUGHNESS COEFFICIENT NUMBER REFERENCE

TIME OF CONCENTRATION CALCULATIONS

NOAA Atlas 14, Volume 1, Version 5 Location name: Bloomfield, New Mexico, USA* Latitude: 36.7167°, Longitude: -108.002° Elevation: 5514.73 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹											
Duration	Average recurrence interval (years)										
	1	2	5	10	<mark>25</mark>	<mark>50</mark>	<mark>100</mark>	200	500	1000	
5-min	0.149	0.192	0.258	0.313	0.392	0.457	0.527	0.603	0.710	0.800	
	(0.128-0.174)	(0.165-0.224)	(0.222-0.301)	(0.269-0.365)	(0.333-0.457)	(0.385-0.532)	(0.439-0.614)	(0.496-0.704)	(0.572-0.833)	(0.634-0.943)	
10-min	0.227	0.292	0.393	0.476	0.596	0.696	0.802	0.917	1.08	1.22	
	(0.195-0.265)	(0.251-0.340)	(0.338-0.458)	(0.409-0.556)	(0.507-0.696)	(0.586-0.810)	(0.668-0.935)	(0.754-1.07)	(0.871-1.27)	(0.966-1.44)	
15-min	0.281	0.362	0.487	0.590	0.739	0.862	0.994	1.14	1.34	1.51	
	(0.241-0.329)	(0.311-0.422)	(0.419-0.568)	(0.507-0.689)	(0.628-0.862)	(0.726-1.00)	(0.828-1.16)	(0.935-1.33)	(1.08-1.57)	(1.20-1.78)	
30-min	0.378	0.487	0.656	0.795	0.995	1.16	1.34	1.53	1.81	2.03	
	(0.325-0.443)	(0.419-0.568)	(0.565-0.764)	(0.683-0.928)	(0.846-1.16)	(0.978-1.35)	(1.12-1.56)	(1.26-1.79)	(1.45-2.12)	(1.61-2.40)	
60-min	0.468	0.603	0.812	0.984	1.23	1.44	1.66	1.90	2.23	2.52	
	(0.402-0.548)	(0.518-0.703)	(0.699-0.946)	(0.845-1.15)	(1.05-1.44)	(1.21-1.67)	(1.38-1.93)	(1.56-2.21)	(1.80-2.62)	(2.00-2.97)	
2-hr	0.527	0.669	0.890	1.07	1.34	1.57	1.81	2.08	2.47	2.80	
	(0.460-0.611)	(0.585-0.777)	(0.777-1.03)	(0.934-1.24)	(1.16-1.55)	(1.33-1.81)	(1.52-2.09)	(1.72-2.40)	(2.00-2.87)	(2.22-3.27)	
3-hr	0.573	0.722	0.939	1.12	1.38	1.60	1.84	2.10	2.49	2.81	
	(0.508-0.654)	(0.638-0.825)	(0.832-1.07)	(0.985-1.27)	(1.21-1.57)	(1.38-1.82)	(1.57-2.10)	(1.76-2.43)	(2.04-2.90)	(2.26-3.30)	
6-hr	0.681	0.845	1.07	1.26	<mark>1.53</mark>	<mark>1.76</mark>	<mark>2.00</mark>	2.26	2.64	2.96	
	(0.614-0.764)	(0.764-0.951)	(0.962-1.20)	(1.13-1.41)	(1.36-1.71)	(1.55-1.97)	(1.73-2.24)	(1.93-2.54)	(2.21-2.99)	(2.42-3.37)	
12-hr	0.800	0.995	1.24	1.43	1.70	1.90	2.12	2.35	2.67	2.99	
	(0.724-0.887)	(0.900-1.10)	(1.12-1.37)	(1.29-1.58)	(1.52-1.87)	(1.69-2.10)	(1.87-2.34)	(2.05-2.61)	(2.29-3.02)	(2.50-3.40)	
24-hr	0.879	1.10	1.40	1.63	1.96	<mark>2.22</mark>	<mark>2.49</mark>	2.78	3.17	3.48	
	(0.794-0.973)	(0.996-1.22)	(1.26-1.54)	(1.47-1.80)	(1.75-2.16)	(1.98-2.44)	(2.21-2.74)	(2.45-3.06)	(2.77-3.50)	(3.02-3.85)	
2-day	1.03	1.29	1.62	1.88	2.24	2.52	2.81	3.11	3.52	3.84	
	(0.934-1.14)	(1.17-1.42)	(1.47-1.78)	(1.70-2.06)	(2.02-2.46)	(2.26-2.76)	(2.50-3.08)	(2.76-3.41)	(3.09-3.87)	(3.35-4.23)	
3-day	1.10	1.38	1.72	1.99	2.36	2.65	2.94	3.24	3.65	3.96	
	(1.00-1.21)	(1.25-1.51)	(1.56-1.89)	(1.81-2.18)	(2.13-2.59)	(2.38-2.90)	(2.63-3.22)	(2.88-3.55)	(3.22-4.01)	(3.47-4.37)	
4-day	1.18	1.47	1.82	2.10	2.48	2.78	3.07	3.37	3.78	4.09	
	(1.07-1.29)	(1.34-1.61)	(1.66-1.99)	(1.91-2.30)	(2.24-2.72)	(2.50-3.04)	(2.76-3.37)	(3.01-3.69)	(3.34-4.15)	(3.60-4.50)	
7-day	1.31	1.64	2.02	2.33	2.72	3.03	3.33	3.64	4.03	4.33	
	(1.20-1.44)	(1.49-1.79)	(1.84-2.21)	(2.11-2.54)	(2.47-2.97)	(2.73-3.30)	(3.00-3.63)	(3.25-3.97)	(3.59-4.41)	(3.83-4.75)	
10-day	1.49	1.85	2.29	2.63	3.07	3.41	3.74	4.06	4.48	4.80	
	(1.35-1.63)	(1.69-2.03)	(2.08-2.50)	(2.39-2.87)	(2.79-3.35)	(3.08-3.71)	(3.37-4.08)	(3.65-4.44)	(4.01-4.92)	(4.26-5.28)	
20-day	1.91	2.39	2.95	3.39	3.97	4.40	4.83	5.27	5.83	6.26	
	(1.73-2.11)	(2.16-2.64)	(2.66-3.25)	(3.06-3.74)	(3.57-4.37)	(3.94-4.85)	(4.32-5.34)	(4.69-5.82)	(5.16-6.46)	(5.51-6.95)	
30-day	2.25	2.81	3.46	3.94	4.57	5.04	5.50	5.94	6.51	6.93	
	(2.04-2.49)	(2.55-3.10)	(3.13-3.82)	(3.56-4.35)	(4.12-5.05)	(4.53-5.56)	(4.91-6.07)	(5.29-6.58)	(5.77-7.23)	(6.11-7.71)	
45-day	2.69	3.35	4.12	4.69	5.41	5.93	6.45	6.93	7.54	7.97	
	(2.45-2.95)	(3.06-3.69)	(3.75-4.51)	(4.27-5.13)	(4.92-5.93)	(5.37-6.50)	(5.81-7.07)	(6.22-7.61)	(6.74-8.29)	(7.11-8.79)	
60-day	3.07	3.83	4.68	5.31	6.11	6.67	7.22	7.74	8.38	8.83	
	(2.78-3.40)	(3.47-4.24)	(4.23-5.18)	(4.79-5.87)	(5.50-6.75)	(6.00-7.38)	(6.48-7.98)	(6.92-8.56)	(7.47-9.29)	(7.85-9.81)	

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Duration 5-min 2-day 10-min 3-day 15-min 4-day 30-min 7-day 60-min 10-day 20-day 2-hr 30-day 3-hr 6-hr 45-day 12-hr 60-day 24-hr

NOAA Atlas 14, Volume 1, Version 5

Created (GMT): Fri Mar 18 18:51:47 2022

Back to Top

Maps & aerials

Small scale terrain

Large scale terrain

Large scale map

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

NOAA Atlas 14, Volume 1, Version 5 Location name: Bloomfield, New Mexico, USA* Latitude: 36.7167°, Longitude: -108.002° Elevation: 5514.73 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹											
Duration	Average recurrence interval (years)										
	1	2	5	10	25	50	100	200	500	1000	
5-min	1.79 (1.54-2.09)	2.30 (1.98-2.69)	3.10 (2.66-3.61)	3.76 (3.23-4.38)	4.70 (4.00-5.48)	5.48 (4.62-6.38)	6.32 (5.27-7.37)	7.24 (5.95-8.45)	8.52 (6.86-10.00)	9.60 (7.61-11.3)	
10-min	1.36	1.75	2.36	2.86	3.58	4.18	4.81	5.50	6.49	7.31	
	(1.17-1.59)	(1.51-2.04)	(2.03-2.75)	(2.45-3.34)	(3.04-4.18)	(3.52-4.86)	(4.01-5.61)	(4.52-6.43)	(5.23-7.61)	(5.80-8.61)	
15-min	1.12	1.45	1.95	2.36	2.96	3.45	3.98	4.55	5.36	6.04	
	(0.964-1.32)	(1.24-1.69)	(1.68-2.27)	(2.03-2.76)	(2.51-3.45)	(2.90-4.02)	(3.31-4.63)	(3.74-5.31)	(4.32-6.29)	(4.79-7.12)	
30-min	0.756	0.974	1.31	1.59	1.99	2.32	2.68	3.06	3.61	4.07	
	(0.650-0.886)	(0.838-1.14)	(1.13-1.53)	(1.37-1.86)	(1.69-2.32)	(1.96-2.70)	(2.23-3.12)	(2.52-3.58)	(2.91-4.23)	(3.22-4.79)	
60-min	0.468	0.603	0.812	0.984	1.23	1.44	1.66	1.90	2.23	2.52	
	(0.402-0.548)	(0.518-0.703)	(0.699-0.946)	(0.845-1.15)	(1.05-1.44)	(1.21-1.67)	(1.38-1.93)	(1.56-2.21)	(1.80-2.62)	(2.00-2.97)	
2-hr	0.264	0.334	0.445	0.537	0.672	0.784	0.907	1.04	1.24	1.40	
	(0.230-0.306)	(0.292-0.388)	(0.388-0.514)	(0.467-0.620)	(0.578-0.776)	(0.667-0.904)	(0.762-1.05)	(0.860-1.20)	(1.00-1.44)	(1.11-1.63)	
3-hr	0.191	0.240	0.313	0.373	0.461	0.533	0.613	0.699	0.828	0.934	
	(0.169-0.218)	(0.212-0.275)	(0.277-0.357)	(0.328-0.424)	(0.402-0.522)	(0.461-0.604)	(0.521-0.701)	(0.587-0.809)	(0.680-0.966)	(0.754-1.10)	
6-hr	0.114	0.141	0.179	0.210	0.256	0.293	0.333	0.377	0.441	0.494	
	(0.103-0.128)	(0.128-0.159)	(0.161-0.200)	(0.189-0.235)	(0.227-0.286)	(0.258-0.328)	(0.289-0.374)	(0.322-0.424)	(0.368-0.499)	(0.405-0.562)	
12-hr	0.066	0.083	0.103	0.118	0.141	0.158	0.176	0.195	0.221	0.248	
	(0.060-0.074)	(0.075-0.091)	(0.093-0.113)	(0.107-0.131)	(0.126-0.155)	(0.141-0.174)	(0.155-0.194)	(0.170-0.217)	(0.190-0.251)	(0.207-0.282)	
24-hr	0.037	0.046	0.058	0.068	0.082	0.093	0.104	0.116	0.132	0.145	
	(0.033-0.041)	(0.042-0.051)	(0.053-0.064)	(0.061-0.075)	(0.073-0.090)	(0.082-0.102)	(0.092-0.114)	(0.102-0.127)	(0.116-0.146)	(0.126-0.160)	
2-day	0.021	0.027	0.034	0.039	0.047	0.052	0.059	0.065	0.073	0.080	
	(0.019-0.024)	(0.024-0.030)	(0.031-0.037)	(0.035-0.043)	(0.042-0.051)	(0.047-0.058)	(0.052-0.064)	(0.057-0.071)	(0.064-0.081)	(0.070-0.088)	
3-day	0.015	0.019	0.024	0.028	0.033	0.037	0.041	0.045	0.051	0.055	
	(0.014-0.017)	(0.017-0.021)	(0.022-0.026)	(0.025-0.030)	(0.030-0.036)	(0.033-0.040)	(0.037-0.045)	(0.040-0.049)	(0.045-0.056)	(0.048-0.061)	
4-day	0.012	0.015	0.019	0.022	0.026	0.029	0.032	0.035	0.039	0.043	
	(0.011-0.013)	(0.014-0.017)	(0.017-0.021)	(0.020-0.024)	(0.023-0.028)	(0.026-0.032)	(0.029-0.035)	(0.031-0.038)	(0.035-0.043)	(0.037-0.047)	
7-day	0.008	0.010	0.012	0.014	0.016	0.018	0.020	0.022	0.024	0.026	
	(0.007-0.009)	(0.009-0.011)	(0.011-0.013)	(0.013-0.015)	(0.015-0.018)	(0.016-0.020)	(0.018-0.022)	(0.019-0.024)	(0.021-0.026)	(0.023-0.028)	
10-day	0.006	0.008	0.010	0.011	0.013	0.014	0.016	0.017	0.019	0.020	
	(0.006-0.007)	(0.007-0.008)	(0.009-0.010)	(0.010-0.012)	(0.012-0.014)	(0.013-0.015)	(0.014-0.017)	(0.015-0.019)	(0.017-0.021)	(0.018-0.022)	
20-day	0.004	0.005	0.006	0.007	0.008	0.009	0.010	0.011	0.012	0.013	
	(0.004-0.004)	(0.005-0.005)	(0.006-0.007)	(0.006-0.008)	(0.007-0.009)	(0.008-0.010)	(0.009-0.011)	(0.010-0.012)	(0.011-0.013)	(0.011-0.014)	
30-day	0.003	0.004	0.005	0.005	0.006	0.007	0.008	0.008	0.009	0.010	
	(0.003-0.003)	(0.004-0.004)	(0.004-0.005)	(0.005-0.006)	(0.006-0.007)	(0.006-0.008)	(0.007-0.008)	(0.007-0.009)	(0.008-0.010)	(0.008-0.011)	
45-day	0.002	0.003	0.004	0.004	0.005	0.005	0.006	0.006	0.007	0.007	
	(0.002-0.003)	(0.003-0.003)	(0.003-0.004)	(0.004-0.005)	(0.005-0.005)	(0.005-0.006)	(0.005-0.007)	(0.006-0.007)	(0.006-0.008)	(0.007-0.008)	
60-day	0.002	0.003	0.003	0.004	0.004	0.005	0.005	0.005	0.006	0.006	
	(0.002-0.002)	(0.002-0.003)	(0.003-0.004)	(0.003-0.004)	(0.004-0.005)	(0.004-0.005)	(0.004-0.006)	(0.005-0.006)	(0.005-0.006)	(0.005-0.007)	

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

NOAA Atlas 14, Volume 1, Version 5

Created (GMT): Fri Mar 18 18:52:56 2022

Back to Top

Maps & aerials

Small scale terrain

Large scale terrain

Large scale map

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for San Juan County, New Mexico, Eastern Part

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
San Juan County, New Mexico, Eastern Part	13
Fs—Fruitland sandy loam, 2 to 5 percent slopes	13
Ft—Fruitland sandy loam, wet, 0 to 2 percent slopes	14
Fu—Fruitland loam, 1 to 3 percent slopes	15
Fw—Fruitland loam, 5 to 8 percent slopes	16
HA—Haplargids-Blackston-Torriorthents complex, very steep	17
St—Stumble loamy sand, 0 to 3 percent slopes	20
SV—Stumble sandy clay loam, gently sloping	21
SW—Stumble-Fruitland association, gently sloping	23
References	25

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

	MAP L	EGEND		MAP INFORMATION					
Area of In	terest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:63,400.					
Soils 	Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Point Features	00 \0 	Very Stony Spot Wet Spot Other Special Line Features	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed					
() () () () () () () () () () () () () (Blowout W Borrow Pit Clay Spot		tures Streams and Canals ation Rails	scale. Please rely on the bar scale on each map sheet for map measurements.					
◇ ¥	Closed Depression Gravel Pit Gravelly Spot	~ ~ ~	Interstate Highways US Routes Major Roads	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)					
© ۸. بینہ	Landfill Lava Flow Marsh or swamp	Backgrou	Local Roads nd Aerial Photography	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more					
* 0 0	Mine or Quarry Miscellaneous Water Perennial Water			accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.					
× + ∷	Rock Outcrop Saline Spot Sandy Spot			Soil Survey Area: San Juan County, New Mexico, Eastern Part Survey Area Data: Version 17, Sep 12, 2021 Soil map units are labeled (as space allows) for map scales					
⇒ ◊ ◊	Severely Eroded Spot Sinkhole Slide or Slip			1:50,000 or larger. Date(s) aerial images were photographed: May 21, 2010—May 30, 2015					
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.					

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI							
Fs	Fruitland sandy loam, 2 to 5 51.6 percent slopes									
Ft	Fruitland sandy loam, wet, 0 to 2 percent slopes	35.8	14.3%							
Fu	Fruitland loam, 1 to 3 percent 4.0 slopes									
Fw	Fruitland loam, 5 to 8 percent 33.4 slopes									
НА	Haplargids-Blackston- Torriorthents complex, very steep	37.2	14.9%							
St	Stumble loamy sand, 0 to 3 percent slopes	9.2	3.7%							
SV	Stumble sandy clay loam, 67.0 gently sloping									
SW	Stumble-Fruitland association, gently sloping	11.3	4.5%							
Totals for Area of Interest		249.6	100.0%							

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas

are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

San Juan County, New Mexico, Eastern Part

Fs—Fruitland sandy loam, 2 to 5 percent slopes

Map Unit Setting

National map unit symbol: 1wwt Elevation: 4,800 to 6,400 feet Mean annual precipitation: 6 to 10 inches Mean annual air temperature: 51 to 55 degrees F Frost-free period: 140 to 160 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Fruitland and similar soils: 95 percent *Minor components:* 5 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Fruitland

Setting

Landform: Stream terraces, alluvial fans Landform position (three-dimensional): Tread, rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from sandstone and shale

Typical profile

A - 0 to 6 inches: sandy loam C - 6 to 60 inches: sandy loam

Properties and qualities

Slope: 2 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Moderate (about 7.2 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: R035XB002NM - Sandy Hydric soil rating: No

Minor Components

Fruitland scl Percent of map unit: 3 percent *Ecological site:* R035XB002NM - Sandy *Hydric soil rating:* No

Stumble

Percent of map unit: 2 percent Ecological site: R035XB002NM - Sandy Hydric soil rating: No

Ft—Fruitland sandy loam, wet, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 1wwv Elevation: 4,800 to 6,400 feet Mean annual precipitation: 6 to 10 inches Mean annual air temperature: 51 to 55 degrees F Frost-free period: 140 to 160 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Fruitland variant and similar soils: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Fruitland Variant

Setting

Landform: Stream terraces, alluvial fans Landform position (three-dimensional): Tread, rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from sandstone and shale

Typical profile

A - 0 to 6 inches: sandy loam

C - 6 to 60 inches: sandy loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: About 24 to 60 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 2 percent
Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Moderate (about 6.6 inches)

Interpretive groups

Land capability classification (irrigated): 2w Land capability classification (nonirrigated): 6w Hydrologic Soil Group: C Ecological site: R035XB002NM - Sandy Hydric soil rating: No

Minor Components

Fruitland scl

Percent of map unit: 5 percent Ecological site: R035XB002NM - Sandy Hydric soil rating: No

Beebe variant

Percent of map unit: 4 percent Ecological site: R035XB002NM - Sandy Hydric soil rating: No

Inclusion

Percent of map unit: 1 percent Landform: Depressions Landform position (three-dimensional): Talf Down-slope shape: Concave Across-slope shape: Concave Ecological site: R035XB001NM - Loamy Hydric soil rating: Yes

Fu—Fruitland loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1www Elevation: 4,800 to 6,000 feet Mean annual precipitation: 6 to 10 inches Mean annual air temperature: 51 to 55 degrees F Frost-free period: 140 to 160 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Fruitland and similar soils: 95 percent *Minor components:* 5 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Fruitland

Setting

Landform: Stream terraces, alluvial fans Landform position (three-dimensional): Tread, rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from sandstone and shale

Typical profile

A - 0 to 8 inches: loam

C - 8 to 60 inches: sandy loam

Properties and qualities

Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Gypsum, maximum content: 1 percent
Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Moderate (about 7.5 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: R035XB001NM - Loamy Hydric soil rating: No

Minor Components

Turley

Percent of map unit: 5 percent Ecological site: R035XB004NM - Clayey Hydric soil rating: No

Fw—Fruitland loam, 5 to 8 percent slopes

Map Unit Setting

National map unit symbol: 1wwx Elevation: 4,800 to 6,000 feet Mean annual precipitation: 6 to 10 inches Mean annual air temperature: 51 to 55 degrees F Frost-free period: 140 to 160 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Fruitland and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Fruitland

Setting

Landform: Alluvial fans, stream terraces Landform position (three-dimensional): Tread, rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Slope alluvium derived from sandstone and shale

Typical profile

A - 0 to 3 inches: loam C - 3 to 60 inches: fine sandy loam

Properties and qualities

Slope: 5 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Gypsum, maximum content: 2 percent
Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: R035XB001NM - Loamy Hydric soil rating: No

Minor Components

Fruitland scl

Percent of map unit: 15 percent Ecological site: R035XB002NM - Sandy Hydric soil rating: No

HA—Haplargids-Blackston-Torriorthents complex, very steep

Map Unit Setting

National map unit symbol: 1wx2 Elevation: 4,800 to 6,400 feet Mean annual precipitation: 6 to 10 inches Mean annual air temperature: 51 to 55 degrees F *Frost-free period:* 140 to 160 days *Farmland classification:* Not prime farmland

Map Unit Composition

Haplargids and similar soils: 45 percent Blackston and similar soils: 30 percent Torriorthents and similar soils: 20 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Haplargids

Setting

Landform: Escarpments Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Mixed alluvium

Typical profile

A - 0 to 7 inches: cobbly sandy loam Bt1 - 7 to 26 inches: cobbly sandy clay loam Bt2 - 26 to 60 inches: cobbly sandy clay loam

Properties and qualities

Slope: 8 to 50 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: R035XB001NM - Loamy Hydric soil rating: No

Description of Blackston

Setting

Landform: Escarpments Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Mixed alluvium

Typical profile

A - 0 to 11 inches: gravelly loam Bk - 11 to 26 inches: very gravelly loam Ck - 26 to 60 inches: very gravelly sand

Properties and qualities

Slope: 8 to 40 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 30 percent
Maximum salinity: Slightly saline to moderately saline (4.0 to 8.0 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: R035XB003NM - Limy Hydric soil rating: No

Description of Torriorthents

Setting

Landform: Escarpments Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Mixed alluvium

Typical profile

C1 - 0 to 3 inches: cobbly loam C2 - 3 to 15 inches: cobbly clay loam R - 15 to 60 inches: bedrock

Properties and qualities

Slope: 8 to 50 percent
Depth to restrictive feature: 10 to 20 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 2 percent
Gypsum, maximum content: 2 percent
Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Very low (about 2.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D *Ecological site:* R035XC328AZ - Cobbly Slopes 10-14" p.z. *Hydric soil rating:* No

Minor Components

Rock outcrop

Percent of map unit: 5 percent Hydric soil rating: No

St—Stumble loamy sand, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1wxv Elevation: 4,800 to 6,400 feet Mean annual precipitation: 6 to 10 inches Mean annual air temperature: 51 to 55 degrees F Frost-free period: 140 to 160 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Stumble and similar soils: 90 percent *Fruitland and similar soils:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Stumble

Setting

Landform: Dunes Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Eolian deposits derived from sandstone

Typical profile

A - 0 to 5 inches: loamy sand C1 - 5 to 29 inches: loamy sand C2 - 29 to 49 inches: gravelly loamy sand C3 - 49 to 81 inches: loamy sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None

Frequency of ponding: None *Calcium carbonate, maximum content:* 2 percent *Maximum salinity:* Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) *Available water supply, 0 to 60 inches:* Low (about 3.7 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: R035XB002NM - Sandy Hydric soil rating: No

Description of Fruitland

Setting

Landform: Alluvial fans Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Fan alluvium derived from sandstone and shale

Typical profile

A - 0 to 8 inches: loam C - 8 to 60 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 7.5 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: R035XB001NM - Loamy Hydric soil rating: No

SV—Stumble sandy clay loam, gently sloping

Map Unit Setting

National map unit symbol: 1wxh *Elevation:* 4,800 to 6,400 feet

Mean annual precipitation: 6 to 10 inches Mean annual air temperature: 51 to 55 degrees F Frost-free period: 140 to 160 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Stumble and similar soils: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Stumble

Setting

Landform: Dunes Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Eolian deposits derived from sandstone

Typical profile

A - 0 to 7 inches: sandy clay loam C - 7 to 60 inches: loamy sand

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 4.8 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: R035XB002NM - Sandy Hydric soil rating: No

Minor Components

Fruitland

Percent of map unit: 10 percent *Ecological site:* R035XB001NM - Loamy *Hydric soil rating:* No

SW—Stumble-Fruitland association, gently sloping

Map Unit Setting

National map unit symbol: 1wxj Elevation: 4,800 to 6,400 feet Mean annual precipitation: 6 to 10 inches Mean annual air temperature: 51 to 55 degrees F Frost-free period: 140 to 160 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Stumble and similar soils: 45 percent Fruitland and similar soils: 40 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Stumble

Setting

Landform: Dunes Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Eolian deposits derived from sandstone

Typical profile

- A 0 to 6 inches: loamy sand
- C1 6 to 29 inches: loamy sand
- C2 29 to 60 inches: gravelly loamy sand
- C3 60 to 64 inches: loamy sand

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: R035XB007NM - Deep Sand Hydric soil rating: No

Description of Fruitland

Setting

Landform: Alluvial fans Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Fan alluvium derived from sandstone and shale

Typical profile

A - 0 to 7 inches: sandy loam C - 7 to 60 inches: sandy loam

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 7.2 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: R035XB002NM - Sandy Hydric soil rating: No

Minor Components

Blancot

Percent of map unit: 10 percent *Ecological site:* R035XB001NM - Loamy *Hydric soil rating:* No

Turley

Percent of map unit: 5 percent Ecological site: R035XB004NM - Clayey Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Table 2-2aRunoff curve numbers for urban areas 1/2

Cover description			Curve nu hydrologic-	umbers for soil group	
	Average percent			0.1	
Cover type and hydrologic condition	impervious area $\frac{2}{2}$	А	В	С	D
Fully developed urban areas (vegetation established)					
Open space (lawns, parks, golf courses, cemeteries, etc.) ^{3/} :					
Poor condition (grass cover < 50%)		<mark>68</mark>	<mark>79</mark>	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
Impervious areas:					
Paved parking lots, roofs, driveways, etc.		_	_		
(excluding right-of-way)		<mark>98</mark>	<mark>.98</mark>	98	98
Streets and roads:					
Paved; curbs and storm sewers (excluding					
right-of-way)		98	98	98	98
Paved; open ditches (including right-of-way)		83	89	92	93
Gravel (including right-of-way)	<mark>.</mark>	<mark>76</mark>	85	89	91
Dirt (including right-of-way)		<mark>72</mark>	82	87	89
Western desert urban areas:					
Natural desert landscaping (pervious areas only) 4/		63	77	85	88
Artificial desert landscaping (impervious weed barrier,					
desert shrub with 1- to 2-inch sand or gravel mulch					
and basin borders)		96	96	96	96
Urban districts:					
Commercial and business		89	92	94	95
Industrial		81	88	91	93
Residential districts by average lot size:					
1/8 acre or less (town houses)		77	85	90	92
1/4 acre		61	75	83	87
1/3 acre		57	72	81	86
1/2 acre		54	70	80	85
1 acre		51	68	79	84
2 acres	12	46	65	77	82
Developing urban areas					
Newly graded areas					
(pervious areas only, no vegetation) ^{5/}		77	86	91	94
Idle lands (CN's are determined using cover types similar to those in table 2-2c).					

¹ Average runoff condition, and $I_a = 0.2S$.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space

cover type.

⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

Table 2-2bRunoff curve numbers for cultivated agricultural lands 1/2

	Cover description		Curve numbers for hydrologic soil group					
	-	Hydrologic		• •	· ·			
Cover type	Treatment 2/	condition 3/	А	В	С	D		
Fallow	Bare soil	_	77	86	91	94		
	Crop residue cover (CR)	Poor	76	85	90	93		
		Good	74	83	88	90		
Row crops	Straight row (SR)	Poor	72	81	88	91		
1	0 ()	Good	67	78	85	89		
	SR + CR	Poor	71	80	87	90		
		Good	64	75	82	85		
	Contoured (C)	Poor	70	79	84	88		
		Good	65	75	82	86		
	C + CR	Poor	69	78	83	87		
		Good	64	74	81	85		
	Contoured & terraced (C&T)	Poor	66	74	80	82		
		Good	62	71	78	81		
	C&T+ CR	Poor	65	73	79	81		
		Good	61	70	77	80		
Small grain	SR	Poor	65	76	84	88		
<u> </u>		Good	63	75	83	87		
	SR + CR	Poor	64	75	83	86		
		Good	60	72	80	84		
	С	Poor	63	74	82	85		
		Good	61	73	81	84		
	C + CR	Poor	62	73	81	84		
		Good	60	72	80	83		
	C&T	Poor	61	72	79	82		
		Good	59	70	78	81		
	C&T+ CR	Poor	60	71	78	81		
		Good	58	69	77	80		
Close-seeded	SR	Poor	66	77	85	89		
or broadcast		Good	58	72	81	85		
legumes or	С	Poor	64	75	83	85		
rotation		Good	55	69	78	83		
meadow	C&T	Poor	63	73	80	83		
		Good	51	67	76	80		

 1 Average runoff condition, and I_{a} =0.2S

 2 Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

³ Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good \geq 20%), and (e) degree of surface roughness.

Poor: Factors impair infiltration and tend to increase runoff.

Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

Table 2-2c Runoff curve numbers for other agricultural lands $1\!\!/$

Cover description	Uudrologia	Curve numbers for hydrologic soil group					
Cover type	condition	А	В	С	D		
Pasture, grassland, or range—continuous forage for grazing. $\underline{^{2\prime}}$	Poor Fair Good	68 49 39	79 69 61	86 79 74	89 84 80		
Meadow—continuous grass, protected from grazing and generally mowed for hay.	_	30	58	71	78		
Brush—brush-weed-grass mixture with brush the major element. ${}^{\mathcal{Y}}$	Poor Fair Good	48 35 30 4⁄		77 70 65	83 77 73		
Woods—grass combination (orchard or tree farm). 5/	Poor Fair Good	57 43 32	73 65 58	82 76 72	86 82 79		
Woods. 🗹	Poor Fair Good	45 36 30 ≰⁄	66 60 55	77 73 70	83 79 77		
Farmsteads—buildings, lanes, driveways, and surrounding lots.	—	59	74	82	86		

1 Average runoff condition, and $I_a = 0.2S$.

 $\mathbf{2}$ *Poor:* <50%) ground cover or heavily grazed with no mulch. Fair: 50 to 75% ground cover and not heavily grazed.

Good: > 75% ground cover and lightly or only occasionally grazed. 3

Poor: <50% ground cover.

50 to 75% ground cover. Fair:

Good: >75% ground cover.

4 Actual curve number is less than 30; use CN = 30 for runoff computations.

5CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

6 Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

Table 2-2dRunoff curve numbers for arid and semiarid rangelands 1/2

Cover description		Curve numbers for hydrologic soil group					
Cover type	Hydrologic condition ^{2/}	A 3⁄	В	C	D		
Herbaceous—mixture of grass, weeds, and	Poor		80	87	93		
low-growing brush, with brush the	Fair		71	81	89		
minor element.	Good		62	74	85		
Oak-aspen—mountain brush mixture of oak brush,	Poor		66	74	79		
aspen, mountain mahogany, bitter brush, maple,	Fair		48	57	63		
and other brush.	Good		30	41	48		
Pinyon-juniper—pinyon, juniper, or both;	Poor		75	85	89		
grass understory.	Fair		58	73	80		
	Good		41	61	71		
Sagebrush with grass understory.	Poor		67	80	85		
	Fair		51	63	70		
	Good		35	47	55		
Desert shrub—major plants include saltbush,	Poor	63	77	85	88		
greasewood, creosotebush, blackbrush, bursage,	Fair	55	72	81	86		
palo verde, mesquite, and cactus.	Good	49	68	79	84		

 1 $\,$ Average runoff condition, and $I_a,$ = 0.2S. For range in humid regions, use table 2-2c.

 2 $\,$ Poor: <30% ground cover (litter, grass, and brush overstory).

Fair: 30 to 70% ground cover.

Good: > 70% ground cover.

³ Curve numbers for group A have been developed only for desert shrub.

HSG C

0.0%

LAND USE SUMMARY & WEIGHTED CURVE NUMBER CALCULATIONS

PROJECT:		Bergin Ln										
PROJECT#:		7130699										
CLIENT:		City of Bloo	mfield									
											17.)	r 00
LAND STATUS	•	Pre-Develop	ment								1 /-N	1ay-22
RUNOFF CURV	/E NUMBERS											
HSG		Open Space	Gravel Road	Desert Shrub	Close Seeded							
Rating	Impervious	Poor		Poor	Good							
HSG A	98	68	76	63	58							
HSG B	98	79	85	77	72							
HSG C	98	86	89	85	81							
HSG D	98	89	91	88	85							
LAND USE ARE	EA SUMMARY & WEIG	HTED CURV	VE NUMBEF	R CALCULA	TIONS							
			Impe	rvious	Open Spa	ce, Poor	Grave	l Road,	Desert Sl	nrub, Poor	Close Seeded, Good	
Basin	Land Use	Acres	%	Acres	%	Acres	%	Acres	%	Acres	%	Acres
Predev 1	Highway/Parking Lots	0.0	100%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
2.162	Gravel Lots	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
Acres	Lawns/Fields	2.2	0%	0.0	0%	0.0	0%	0.0	0%	0.0	100%	2.2
Total Mil (sq)	Natural Conditions	0.00	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
0.0034	TOTAL	2.16		0.01		0.00		0.0		0.00		2.2
DCIA			Impe	rvious	Open Spa	ce, Poor	, Poor Gravel Road,		Desert Shrub, Poor		Close Seeded, Good	
0.00%	HSG Rating	% Area	^	Acres		Acres		Acres		Acres		Acres
	HSG A	0.0%		0.0		0.0		0.0		0.0		0.0
	HSG B	100.0%		0.0		0.0		0.0		0.0		2.2
	HSG C	0.0%		0.0		0.0		0.0		0.0		0.0
	HSG D	0.0%		0.0		0.0		0.0		0.0		0.0
	TOTAL			0.01		0.00	•	0.0		0.0	L	2.15
										Weighted	CN	72
			Impe	rvious	Open Spa	ce, Poor	Grave	l Road,	Desert Sl	nrub, Poor	Close Se	eded, Good
Basin	Land Use	Acres	%	Acres	%	Acres	%	Acres	%	Acres	%	Acres
Predev 2	Highway/Parking Lots	0.89	100%	0.89	0%	0.0	0%	0.0	0%	0.0	0%	0.0
1.009	Gravel Lots	0.00	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
Acres	Lawns/fields	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
Total Mil (sq)	Natural Conditions	0.12	0%	0.0	0%	0.0	0%	0.0	100%	0.1	0%	0.0
0.0016	TOTAL	1.0090		0.89		0.00		0.0		0.12		0.0
DCIA			Impe	rvious	Open Spa	ce, Poor	Grave	l Road,	Desert Sl	nrub, Poor	Close Se	eded, Good
0.00%	HSG Rating	% Area	`	Acres		Acres		Acres		Acres		Acres
	HSG A	0.0%		0.0		0.0	1	0.0	1	0.0		0.0
	HSG B	100.0%		0.9	1	0.0	1	0.0	1	0.1	1	0.0

		0.00/		0.0		0.0		0.0		0.0		0.0
	HSG D	0.0%		0.0		0.0		0.0		0.0		0.0
	TOTAL			0.89		0.00		0.0		0.1		0.00
			-		-				-	Weighted (CN	96
			Impe	rvious	Open Spa	ace, Poor	Grave	Road,	Desert Sl	nrub, Poor	Close See	eded, Good
Basin	Land Use	Acres	%	Acres	%	Acres	%	Acres	%	Acres	%	Acres
Predev 3	Highway/Parking Lots	1.6180	100%	1.62	0%	0.0	0%	0.0	0%	0.0	0%	0.0
1.9026	Gravel Lots	0.0000	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
Acres	Lawns/fields	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
Total Mil (sq)	Natural Conditions	0.28	0%	0.0	0%	0.0	0%	0.0	100%	0.3	0%	0.0
0.0030	TOTAL	1.9025		1.62		0.00		0.0		0.28		0.0
DCIA			Impervious		Open Spa	en Space, Poor Gravel Road,		Desert Shrub, Poor		Close Seeded, Good		
0.00%	HSG Rating	% Area		Acres		Acres		Acres		Acres		Acres
	HSG A	0.0%		0.0		0.0		0.0		0.0		0.0
	HSG B	100.0%		1.6		0.0		0.0		0.3		0.0
	HSG C	0.0%		0.0		0.0		0.0		0.0		0.0
	HSG D	0.0%		0.0		0.0		0.0		0.0		0.0
	TOTAL			1.62		0.00		0.0		0.3		0.00
										Weighted	CN	95
			Impe	rvious	Open Spa	ace, Poor	Grave	Road,	Desert Sl	nrub, Poor	Close See	eded, Good
Basin	Land Use	Acres	%	Acres	%	Acres	%	Acres	%	Acres	%	Acres
Predev 4	Highway/Parking Lots	0.7390	100%	0.74	0%	0.0	0%	0.0	0%	0.0	0%	0.0
0.9201	Gravel Lots	0.1810	0%	0.0	0%	0.0	100%	0.2	0%	0.0	0%	0.0
Acres	Lawns/fields	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
Total Mil (sq)	Natural Conditions	0.00	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0

0.0

0.0

0.0

0.0

0.0

	V											
PROJECT:		Bergin Ln										
PROJECT#		7130600										
I KUJEC 1#.		/130099	C* 11									
CLIENT:		City of Bloom	mfield									
LAND STATUS:		Pre-Develop	ment								17-M	lay-22
RUNOFF CURV	E NUMBERS		~				[I				
HSG Dating	T	Open Space	Gravel Road	Desert Shrub	Close Seeded							
HSG A	1mpervious 98	Poor 68	76	Poor 63	G000							
HSG B	98	79	85	77	72							
HSG C	98	86	89	85	81							
HSG D	98	89	91	88	85							
LAND USE ARE	A SUMMARY & WEIG	HTED CURV	E NUMBER	CALCULA	TIONS			1				
0.0014	TOTAL	0.9200		0.74		0.00		0.2		0.00		0.0
DCIA			Imper	rvious	Open Spa	ce, Poor	Gravel	Road,	Desert Sh	rub, Poor	Close See	eded, Good
0.00%	HSG Rating	% Area		Acres		Acres		Acres		Acres		Acres
	HSG A	0.0%		0.0		0.0		0.0		0.0		0.0
	HSG B	100.0%		0.7		0.0		0.2		0.0		0.0
	HSG C	0.0%		0.0		0.0		0.0		0.0		0.0
	HSG D	0.0%		0.0		0.0		0.0		0.0		0.0
	TOTAL			0.74		0.00		0.2		0.0		0.00
Weighted CN 96												
			Imper	rvious	Open Spa	ce, Poor	Gravel	Road,	Desert Sh	rub, Poor	Close See	eded, Good
Basin	Land Use	Acres	%	Acres	%	Acres	%	Acres	%	Acres	%	Acres
Predev 5	Highway/Parking Lots	0.7602	100%	0.76	0%	0.0	0%	0.0	0%	0.0	0%	0.0
9.0131	Gravel Lots	0.0000	0%	0.0	0%	0.0	100%	0.0	0%	0.0	0%	0.0
Acres	Lawns/fields	1.2302	0%	0.0	100%	1.2	0%	0.0	0%	0.0	0%	0.0
Total Mil (sq)	Natural Conditions	7.02	0%	0.0	0%	0.0	0%	0.0	100%	7.0	0%	0.0
0.0141	TOTAL	9.013		0.76		1.23		0.0		7.02		0.0
DCIA			Imper	rvious	Open Spa	ce, Poor	Gravel	Road,	Desert Sh	rub, Poor	Close See	eded, Good
0.00%	HSG Rating	% Area		Acres		Acres		Acres		Acres		Acres
	HSG A	14.4%		0.1		0.2		0.0		1.0		0.0
	HSG B	85.6%		0.7		1.1		0.0		6.0		0.0
	HSG C	0.0%		0.0		0.0		0.0		0.0		0.0
	ТОТАІ	0.0%		0.0		1.23		0.0		0.0 7.0		0.0
	IOTAL			0.70		1.23		0.0		7.0 Weighted (٦N	77
			Imper	vious	Open Spa	ce Poor	Grave	Road	Desert Sh	rub Poor	Close See	eded Good
Rasin	Land Use	Acres	%	Acres	%	Acres	%	Acres	%	Acres	%	Acres
Predev 6	Highway/Parking Lots	0.0097	100%	0.01	0%	0.0	0%	0.0	0%	0.0	0%	0.0
1.5899	Gravel Lots	0.3500	0%	0.0	0%	0.0	100%	0.4	0%	0.0	0%	0.0
Acres	Lawns/fields	1.2	0%	0.0	0%	0.0	0%	0.0	0%	0.0	100%	1.2
Total Mil (sq)	Natural Conditions	0.00	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
0.0025	TOTAL	1.5917		0.01		0.00		0.4		0.00		1.2
DCIA			Imper	rvious	Open Spa	ce, Poor	Gravel	Road,	Desert Sh	rub, Poor	Close See	eded, Good
0.00%	HSG Rating	% Area		Acres		Acres		Acres		Acres		Acres
	HSG A	0.0%		0.0		0.0		0.0		0.0		0.0
	HSG B	100.0%		0.0		0.0		0.4		0.0		1.2
	HSG C	0.0%		0.0		0.0		0.0		0.0		0.0
	HSG D	0.0%		0.0		0.0		0.0		0.0		0.0
	IOTAL			0.01		0.00		0.4		0.0 Weighted (NI	75
			Image	vious	Onon Car	Door	Gravel	Road	Docort CL	mub Door	Close Sec	15 adad Good
Basin	I and Use	Acres	 %	Acres	open spa	Acres	%	Acres	0%	Acres	© 0%	Acres
Predev 7	Highway/Parking Lots	3.4666	100%	3.47	0%	0.0	0%	0.0	0%	0.0	0%	0.0
3.9552	Gravel Lots	0.1596	0%	0.0	0%	0.0	100%	0.2	0%	0.0	0%	0.0
Acres	Lawns/fields	0.329	0%	0.0	100%	0.3	0%	0.0	0%	0.0	0%	0.0
Total Mil (sq)	Natural Conditions	0.00	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
0.0062	TOTAL	3.9548		3.47		0.33		0.2		0.00		0.0
DCIA			Imper	rvious	Open Spa	ce, Poor	Gravel	Road,	Desert Sh	rub, Poor	Close See	eded, Good
0.00%	HSG Rating	% Area		Acres		Acres		Acres		Acres		Acres
I Í	HSG A	62.4%		2.2		0.2		0.1		0.0		0.0
	HSG B	37.6%		1.3		0.1		0.1		0.0		0.0
	HSG C	0.0%		0.0		0.0		0.0		0.0		0.0
	HSG D	0.0%		0.0		0.0		0.0		0.0		0.0
I	TOTAL			3.47		0.33		0.2		0.0		0.00

PROJECT:	Bergin Ln
PROJECT#:	7130699
CLIENT:	City of Bloomfield

LAND STATUS:

17-May-22

RUNOFF CURVE NUMBERS

	Open Space	Gravel Road	Desert Shrub	Close Seeded			
Impervious	Poor		Poor	Good			
98	68	76	63	58			
98	79	85	77	72			
98	86	89	85	81			
98	89	91	88	85			
	Impervious 98 98 98 98 98	Open Space Impervious Poor 98 68 98 79 98 86 98 89	Open Space Gravel Road Impervious Poor 98 68 76 98 79 85 98 86 89 98 89 91	Open SpaceGravel RoadDesert ShrubImperviousPoorPoor98687663987985779886898598899188	Open Space Gravel Road Desert Shrub Close Seeded Impervious Poor Poor Good 98 68 76 63 58 98 79 85 77 72 98 86 89 85 81 98 89 91 88 85	Open Space Gravel Road Desert Shrub Close Seeded Impervious Poor Poor Good 98 68 76 63 58 98 79 85 77 72 98 86 89 85 81 98 89 91 88 85	Open Space Gravel Road Desert Shrub Close Seeded Impervious Poor Poor Good 98 68 76 63 58 98 79 85 77 72 98 86 89 85 81 98 89 91 88 85

LAND USE AREA SUMMARY & WEIGHTED CURVE NUMBER CALCULATIONS

Pre-Development

	Weighted CN										95	
			Impervious		Open Spa	Open Space, Poor		Gravel Road,		nrub, Poor	Close Seeded, Good	
Basin	Land Use	Acres	%	Acres	%	Acres	%	Acres	%	Acres	%	Acres
Predev 8	Highway/Parking Lots	0.4702	100%	0.47	0%	0.0	0%	0.0	0%	0.0	0%	0.0
0.7972	Gravel Lots	0.0000	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
Acres	Lawns/fields	0.327	0%	0.0	100%	0.3	0%	0.0	0%	0.0	0%	0.0
Total Mil (sq)	Natural Conditions	0.00	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
0.0012	TOTAL	0.7972		0.47		0.33		0.0		0.00		0.0
DCIA			Impe	rvious	Open Spa	ice, Poor	Gravel	Road,	Desert Sh	nrub, Poor	Close See	eded, Good
0.00%	HSG Rating	% Area		Acres		Acres		Acres		Acres		Acres
	HSG A	0.0%		0.0		0.0		0.0		0.0		0.0
	HSG B	100.0%		0.5		0.3		0.0		0.0		0.0
	HSG C	0.0%		0.0		0.0		0.0		0.0		0.0
	HSG D	0.0%		0.0		0.0		0.0		0.0		0.0
	TOTAL			0.47		0.33		0.0		0.0		0.00
										Weighted (CN	90
			Impe	rvious	Open Spa	ice, Poor	Gravel	Road,	Desert Sh	nrub, Poor	Close See	eded, Good
Basin	Land Use	Acres	%	Acres	%	Acres	%	Acres	%	Acres	%	Acres
Predev 9	Highway/Parking Lots	1.5000	100%	1.50	0%	0.0	0%	0.0	0%	0.0	0%	0.0
2.4769	Gravel Lots	0.8557	0%	0.0	0%	0.0	100%	0.9	0%	0.0	0%	0.0
Acres	Lawns/fields	0.1	0%	0.0	100%	0.1	0%	0.0	0%	0.0	0%	0.0
Total Mil (sq)	Natural Conditions	0.00	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
0.0039	TOTAL	2.4765		1.50		0.12		0.9		0.00		0.0
DCIA			Impe	rvious	Open Spa	ice, Poor	Gravel	Road,	Desert Sł	nrub, Poor	Close See	eded, Good
0.00%	HSG Rating	% Area		Acres		Acres		Acres		Acres		Acres
	HSG A	0.0%		0.0		0.0		0.0		0.0		0.0
	HSG B	100.0%		1.5		0.1		0.9		0.0		0.0
	HSG C	0.0%		0.0		0.0		0.0		0.0		0.0
	HSG D	0.0%		0.0		0.0		0.0		0.0		0.0
	TOTAL			1.50	0.12		0.9		0.0		0.00	
									1	Weighted (CN 93	
			Impe	rvious	Open Spa	ice, Poor	Gravel	Road,	Desert Sh	nrub, Poor	Close See	eded, Good
Basin	Land Use	Acres	%	Acres	%	Acres	%	Acres	%	Acres	%	Acres
Predev 10	Highway/Parking Lots	1.1056	100%	1.11	0%	0.0	0%	0.0	0%	0.0	0%	0.0
1.9705	Gravel Lots	0.1628	0%	0.0	0%	0.0	100%	0.2	0%	0.0	0%	0.0
Acres	Lawns/fields	0.7	0%	0.0	100%	0.7	0%	0.0	0%	0.0	0%	0.0
Total Mil (sq)	Natural Conditions	0.00	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
0.0031	TOTAL	1.9705		. 1.11		0.70	<u> </u>	0.2		0.00		0.0
DCIA		0/ 1	Impe	rvious	Open Spa	ice, Poor	Gravel	Road,	Desert Sh	hrub, Poor	Close See	eded, Good
0.00%	HSG Rating	% Area		Acres		Acres		Acres		Acres		Acres
	HSU A	0.0%		0.0		0.0		0.0		0.0		0.0
	H20 R	100.0%		1.1		0./		0.2		0.0		0.0
	HSG C	0.0%		0.0		0.0		0.0		0.0		0.0
ļl	HSG D	0.0%		0.0		0.0		0.0		0.0		0.0
	TOTAL			1.11		0.70		0.2		0.0		0.00
										Weighted (CN	90

eld

LAND STATUS:

17-May-22

RUNOFF CURVE NUMBERS

HSG		Dirt Road	Gravel Road	Desert Shrub	Row Crops		
Rating	Impervious			Poor	Good		
HSG A	98	72	76	63	67		
HSG B	98	82	85	77	78		
HSG C	98	87	89	85	85		
HSG D	98	89	91	88	89		

LAND USE AREA SUMMARY & WEIGHTED CURVE NUMBER CALCULATIONS

Pre-Development

			Imper	rvious	Dirt R	oad,	Gravel	Road,	Desert Sh	nrub, Poor	Row Cr	ops, Good
Basin	Land Use	Acres	%	Acres	%	Acres	%	Acres	%	Acres	%	Acres
Predev R1-R4	Road	0.1061	100%	0.1	0%	0.0	0%	0.0	0%	0.0	0%	0.0
0.1061	Gravel Lots	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
Acres	Lawns/Fields	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
Total Mil (sq)	Natural Conditions	0.00	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
0.0002	TOTAL	0.11		0.11		0.00		0.0		0.00		0.0
DCIA			Imper	rvious	Dirt R	oad,	Gravel	Road,	Desert Sh	nrub, Poor	Row Cr	ops, Good
0.00%	HSG Rating	% Area		Acres		Acres		Acres		Acres		Acres
R1-R4 &	HSG A	0.0%		0.0		0.0		0.0		0.0		0.0
R24-R25	HSG B	100.0%		0.1		0.0		0.0		0.0		0.0
Roads W/Curb	HSG C	0.0%		0.0		0.0		0.0		0.0		0.0
& Sidewalk	HSG D	0.0%		0.0		0.0		0.0		0.0		0.0
	TOTAL			0.11		0.00		0.0	<u> </u>	0.0		0.00
										Weighted (CN	<u>98</u>
			Imper	rvious	Dirt R	oad,	Gravel	Road,	Desert Sh	nrub, Poor	Row Cr	ops, Good
Basin	Land Use	Acres	%	Acres	%	Acres	%	Acres	%	Acres	%	Acres
Predev R19-R23	Roads	0.0620	100%	0.06	0%	0.0	0%	0.0	0%	0.0	0%	0.0
0.0937	Dirt ROW	0.0317	0%	0.0	100%	0.0	0%	0.0	0%	0.0	0%	0.0
Acres	Lawns/fields	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
Total Mil (sq)	Natural Conditions	0.00	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
0.0001	TOTAL	0.0937		0.06		0.03		0.0		0.00		0.0
DCIA			Imper	rvious	Dirt R	oad,	Gravel	Road,	Desert Sh	nrub, Poor	Row Cr	ops, Good
0.00%	HSG Rating	% Area		Acres		Acres		Acres		Acres		Acres
	HSG A	0.0%		0.0		0.0		0.0		0.0		0.0
Roads W/Curb	HSG B	100.0%		0.1		0.0		0.0		0.0		0.0
On One Side	HSG C	0.0%		0.0		0.0		0.0		0.0		0.0
	HSG D	0.00/	. ,	0.0		0.0		0.0	1	0.0	1	0.0
		0.0%		0.0		0.0		0.0		0.0		0.0
· · ·	TOTAL	0.0%		0.0	L	0.03		0.0		0.0		0.00
	TOTAL	0.0%	ı	0.06		0.03		0.0		0.0 0.0 Weighted (CN	0.00 0.00 93
	TOTAL	0.0%	Imper	0.0 0.06	Dirt R	0.03 0.03	Gravel	0.0 0.0 Road,	Desert Sł	0.0 0.0 Weighted (nrub, Poor	CN Row Cr	0.00 0.00 93 ops, Good
Basin	TOTAL Land Use	Acres	Imper %	0.0 0.06 rvious Acres	Dirt R %	0.0 0.03 oad, Acres	Gravel %	0.0 0.0 Road, Acres	Desert Sh %	0.0 0.0 Weighted (nrub, Poor Acres	CN Row Cr %	0.00 0.00 93 ops, Good Acres
Basin Predev R5-R13	TOTAL Land Use Roads	Acres 0.0%	Imper % 100%	0.0 0.06 vious Acres 0.06	Dirt R % 0%	0.0 0.03 0ad, Acres 0.0	Gravel % 0%	0.0 0.0 Road, Acres 0.0	Desert Sh % 0%	0.0 0.0 Weighted (nrub, Poor Acres 0.0	CN Row Cr % 0%	0.00 0.00 93 ops, Good Acres 0.0
Basin Predev R5-R13 0.0937	TOTAL Land Use Roads Dirt ROW	Acres 0.0579 0.0358	Impei % 100% 0%	0.0 0.06 rvious Acres 0.06 0.0	Dirt R % 0% 100%	0.0 0.03 0ad, Acres 0.0 0.0	Gravel % 0% 0%	0.0 0.0 Road, Acres 0.0 0.0	Desert Sh % 0% 0%	0.0 0.0 Weighted (nrub, Poor Acres 0.0 0.0	CN Row Cr % 0% 0%	0.00 0.00 93 ops, Good Acres 0.0 0.0 0.0
Basin Predev R5-R13 0.0937 Acres	TOTAL Land Use Roads Dirt ROW Lawns/fields	Acres 0.0579 0.0358 0.0	Imper % 100% 0% 0%	0.0 0.06 rvious Acres 0.06 0.0 0.0	Dirt R % 0% 100% 0%	0.0 0.03 0ad, Acres 0.0 0.0 0.0 0.0	Gravel % 0% 0% 0%	0.0 0.0 Road, Acres 0.0 0.0 0.0	Desert Sh % 0% 0% 0%	0.0 0.0 Weighted (nrub, Poor Acres 0.0 0.0 0.0 0.0	CN Row Cr % 0% 0% 0%	0.00 0.00 93 ops, Good Acres 0.0 0.0 0.0 0.0
Basin Predev R5-R13 0.0937 Acres Total Mil (sq)	TOTAL Land Use Roads Dirt ROW Lawns/fields Natural Conditions	Acres 0.0579 0.0358 0.0 0.00	Imper % 100% 0% 0% 0%	0.0 0.06 rvious Acres 0.06 0.0 0.0 0.0 0.0	Dirt R % 0% 100% 0% 0%	0.0 0.03 0ad, Acres 0.0 0.0 0.0 0.0 0.0	Gravel % 0% 0% 0% 0%	0.0 0.0 Road, Acres 0.0 0.0 0.0 0.0 0.0	Desert Sh % 0% 0% 0% 0%	0.0 0.0 Weighted (nrub, Poor Acres 0.0 0.0 0.0 0.0 0.0	CN Row Cr % 0% 0% 0% 0%	0.0 0.00 93 ops, Good Acres 0.0 0.0 0.0 0.0 0.0
Basin Predev R5-R13 0.0937 Acres Total Mil (sq) 0.0001	TOTAL TOTAL Land Use Roads Dirt ROW Lawns/fields Natural Conditions TOTAL	Acres 0.0579 0.0358 0.0 0.00 0.00 0.0937	Impei % 100% 0% 0% 0%	0.0 0.06 rvious Acres 0.06 0.0 0.0 0.0 0.0 0.06	Dirt R % 0% 100% 0% 0%	0.0 0.03 0ad, Acres 0.0 0.0 0.0 0.0 0.0 0.04	Gravel % 0% 0% 0% 0%	0.0 0.0 Road, Acres 0.0 0.0 0.0 0.0 0.0 0.0	Desert Sh % 0% 0% 0% 0%	0.0 0.0 Weighted (nrub, Poor Acres 0.0 0.0 0.0 0.0 0.0 0.0	CN Row Cr % 0% 0% 0% 0%	0.0 0.00 93 ops, Good Acres 0.0 0.0 0.0 0.0 0.0 0.0
Basin Predev R5-R13 0.0937 Acres Total Mil (sq) 0.0001 DCIA	TOTAL Land Use Roads Dirt ROW Lawns/fields Natural Conditions TOTAL	Acres 0.0579 0.0358 0.0 0.00 0.00 0.0937	Imper % 100% 0% 0% 0% 0%	0.0 0.06 rvious Acres 0.06 0.0 0.0 0.0 0.0 0.06 rvious	Dirt R % 0% 100% 0% 0% Dirt R	0.0 0.03 0ad, Acres 0.0 0.0 0.0 0.0 0.04 0ad,	Gravel % 0% 0% 0% 0% Gravel	0.0 0.0 Road, Acres 0.0 0.0 0.0 0.0 0.0 Road,	Desert Sh % 0% 0% 0% 0% 0%	0.0 0.0 Weighted (nrub, Poor Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.00 nrub, Poor	CN Row Cr % 0% 0% 0% 0% 0%	0.0 0.00 93 ops, Good Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Basin Predev R5-R13 0.0937 Acres Total Mil (sq) 0.0001 DCIA 0.00%	TOTAL Land Use Roads Dirt ROW Lawns/fields Natural Conditions TOTAL HSG Rating	Acres 0.0579 0.0358 0.0 0.00 0.00 0.0937 % Area	Impei % 100% 0% 0% 0% Imper	0.0 0.06 rvious Acres 0.06 0.0 0.0 0.0 0.0 0.0 0.06 rvious Acres	Dirt R % 0% 100% 0% 0% Dirt R	0.0 0.03 0ad, Acres 0.0 0.0 0.0 0.0 0.0 0.04 0ad, Acres	Gravel % 0% 0% 0% 0% Gravel	0.0 0.0 Road, Acres 0.0 0.0 0.0 0.0 0.0 Road, Acres	Desert Sh % 0% 0% 0% 0% 0% Desert Sh	0.0 0.0 Weighted (nrub, Poor Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	CN Row Cr % 0% 0% 0% 0% 0% Row Cr	0.0 0.00 93 ops, Good Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Basin Predev R5-R13 0.0937 Acres Total Mil (sq) 0.0001 DCIA 0.00%	TOTAL Land Use Roads Dirt ROW Lawns/fields Natural Conditions TOTAL HSG Rating HSG A	Acres 0.0579 0.0358 0.0 0.00 0.00 0.0937 % Area 0.0%	Impei % 100% 0% 0% 0% Imper	0.0 0.06 rvious Acres 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.06 rvious Acres 0.06 rvious Acres 0.0	Dirt R % 0% 100% 0% 0% Dirt R	0.0 0.03 0ad, Acres 0.0 0.0 0.0 0.0 0.04 0ad, Acres 0.0	Gravel % 0% 0% 0% 0% Gravel	0.0 0.0 Road, Acres 0.0 0.0 0.0 0.0 0.0 Road, Acres 0.0	Desert Sh % 0% 0% 0% 0% Desert Sh	0.0 0.0 Weighted (nrub, Poor Acres 0.0 0.0 0.0 0.0 0.00 nrub, Poor Acres 0.0	CN Row Cr % 0% 0% 0% 0% 0%	0.0 0.00 93 ops, Good Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Basin Predev R5-R13 0.0937 Acres Total Mil (sq) 0.0001 DCIA 0.00% Roads Without	TOTAL TOTAL Land Use Roads Dirt ROW Lawns/fields Natural Conditions TOTAL HSG Rating HSG A HSG B	Acres 0.0579 0.0358 0.0 0.00 0.00 0.0937 % Area 0.0% 100.0%	Imper % 100% 0% 0% 0% Imper	0.0 0.06 rvious Acres 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.06 rvious Acres 0.0 0.0 0.06	Dirt R % 0% 100% 0% 0% Dirt R	0.0 0.03 0ad, Acres 0.0 0.0 0.0 0.0 0.04 0ad, Acres 0.0 0.04 0.05 0.04 0.05 0.04 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.04 0.05	Gravel % 0% 0% 0% Gravel	0.0 0.0 Road, Acres 0.0 0.0 0.0 0.0 0.0 Road, Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Desert Sh % 0% 0% 0% 0% Desert Sh	0.0 0.0 Weighted (nrub, Poor Acres 0.0 0.0 0.0 0.0 0.00 nrub, Poor Acres 0.0 0.00	CN Row Cr % 0% 0% 0% 0% 0%	0.0 0.00 93 ops, Good Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Basin Predev R5-R13 0.0937 Acres Total Mil (sq) 0.0001 DCIA 0.00% Roads Without Curb or Sidewalk	TOTAL TOTAL Land Use Roads Dirt ROW Lawns/fields Natural Conditions TOTAL HSG Rating HSG A HSG B HSG C	Acres 0.0579 0.0358 0.0 0.00 0.0937 % Area 0.0% 100.0% 0.0%	Impei % 100% 0% 0% 0% Imper	0.0 0.06 rvious Acres 0.06 0.0 0.0 0.0 0.0 0.06 rvious Acres 0.06 0.00 0.06 rvious 0.06 0.00 0.01 0.0	Dirt R % 0% 100% 0% 0% Dirt R	0.0 0.03 0ad, Acres 0.0 0.0 0.0 0.0 0.04 0ad, Acres 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.	Gravel % 0% 0% 0% Gravel	0.0 0.0 Road, Acres 0.0 0.0 0.0 0.0 0.0 Road, Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Desert Sh % 0% 0% 0% 0% Desert Sh	0.0 0.0 Weighted (nrub, Poor Acres 0.0 0.0 0.0 0.0 0.00 nrub, Poor Acres 0.0 0.00	CN Row Cr % 0% 0% 0% 0% 0%	0.0 0.00 93 ops, Good Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Basin Predev R5-R13 0.0937 Acres Total Mil (sq) 0.0001 DCIA 0.00% Roads Without Curb or Sidewalk HSG B	TOTAL TOTAL Land Use Roads Dirt ROW Lawns/fields Natural Conditions TOTAL HSG Rating HSG A HSG B HSG B HSG C HSG D	Acres 0.0579 0.0358 0.0 0.00 0.0937 % Area 0.0% 100.0% 0.0% 0.0%	Imper % 100% 0% 0% 0% Imper	0.0 0.06 rvious Acres 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.06 rvious Acres 0.00 0.1 0.0 0.0 0.0	Dirt R % 0% 100% 0% 0% Dirt R	0.0 0.03 0ad, Acres 0.0 0.0 0.0 0.0 0.04 0ad, Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Gravel % 0% 0% 0% Gravel	0.0 0.0 Road, Acres 0.0 0.0 0.0 0.0 0.0 Road, Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Desert Sh % 0% 0% 0% 0% Desert Sh	0.0 0.0 Weighted (nrub, Poor Acres 0.0 0.0 0.0 0.0 0.0 0.00 nrub, Poor Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	CN Row Cr % 0% 0% 0% 0%	0.00 0.00 93 ops, Good Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Basin Predev R5-R13 0.0937 Acres Total Mil (sq) 0.0001 DCIA 0.00% Roads Without Curb or Sidewalk HSG B	TOTAL TOTAL Land Use Roads Dirt ROW Lawns/fields Natural Conditions TOTAL HSG Rating HSG A HSG B HSG B HSG C HSG D TOTAL	Acres 0.0579 0.0358 0.0 0.00 0.0937 % Area 0.0% 100.0% 0.0% 0.0%	Imper % 100% 0% 0% 0% Imper	0.0 0.06 rvious Acres 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.06 rvious Acres 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0	Dirt R % 0% 100% 0% 0% Dirt R	0.0 0.03 0ad, Acres 0.0 0.0 0.0 0.0 0.04 0ad, Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Gravel % 0% 0% 0% Gravel	0.0 0.0 Road, Acres 0.0 0.0 0.0 0.0 0.0 Road, Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Desert Sh % 0% 0% 0% 0% Desert Sh	0.0 0.0 Weighted (nrub, Poor Acres 0.0 0.0 0.0 0.0 0.0 0.00 nrub, Poor Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	CN Row Cr % 0% 0% 0% 0%	0.00 0.00 93 ops, Good Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Basin Predev R5-R13 0.0937 Acres Total Mil (sq) 0.0001 DCIA 0.00% Roads Without Curb or Sidewalk HSG B	TOTAL TOTAL Land Use Roads Dirt ROW Lawns/fields Natural Conditions TOTAL HSG Rating HSG A HSG B HSG C HSG D TOTAL	Acres 0.0579 0.0358 0.0 0.00 0.00 0.0937 % Area 0.0% 100.0% 0.0% 0.0%	Imper % 100% 0% 0% 0% Imper	0.0 0.06 rvious Acres 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.06 rvious Acres 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0	Dirt R % 0% 100% 0% 0% Dirt R	0.0 0.03 0ad, Acres 0.0 0.0 0.0 0.0 0.04 0ad, Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Gravel % 0% 0% 0% Gravel	0.0 0.0	Desert Sh % 0% 0% 0% 0% Desert Sh	0.0 0.0 Weighted (nrub, Poor Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	CN Row Cr % 0% 0% 0% 0% CN	0.00 0.00 93 ops, Good Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Basin Predev R5-R13 0.0937 Acres Total Mil (sq) 0.0001 DCIA 0.00% Roads Without Curb or Sidewall HSG B	TOTAL TOTAL Land Use Roads Dirt ROW Lawns/fields Natural Conditions TOTAL HSG Rating HSG A HSG B HSG C HSG D TOTAL	Acres 0.0579 0.0358 0.0 0.00 0.00 0.0937 % Area 0.0% 100.0% 0.0% 0.0%	Imper % 100% 0% 0% 0% Imper	0.0 0.06 rvious Acres 0.06 0.0 0.0 0.0 0.0 0.06 rvious Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Dirt R % 0% 100% 0% 0% Dirt R	0.0 0.03 0ad, Acres 0.0 0.0 0.0 0.0 0.04 0ad, Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Gravel % 0% 0% 0% Gravel	0.0 0.0 0.0 Acres 0.0	Desert Sh % 0% 0% 0% Desert Sh	0.0 0.0 Weighted (nrub, Poor Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	CN Row Cr % 0% 0% 0% 0% 0% CN Row Cr CN Row Cr	0.00 0.00 93 ops, Good Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Basin Predev R5-R13 0.0937 Acres Total Mil (sq) 0.0001 DCIA 0.00% Roads Without Curb or Sidewalk HSG B Basin	TOTAL TOTAL Land Use Roads Dirt ROW Lawns/fields Natural Conditions TOTAL HSG Rating HSG A HSG B HSG C HSG D TOTAL Land Use	Acres 0.0579 0.0358 0.0 0.00 0.00 0.0937 % Area 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%	Imper % 100% 0% 0% 0% Imper	0.0 0.06 rvious Acres 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.06 vvious Acres	Dirt R % 0% 100% 0% 0% Dirt R Dirt R	0.0 0.03 0ad, Acres 0.0 0.0 0.0 0.0 0.0 0.04 0ad, Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Gravel % 0% 0% 0% Gravel Gravel %	0.0 0.0 0.0 Acres 0.0 0.0	Desert Sh % 0% 0% 0% 0% Desert Sh Desert Sh	0.0 0.0 Weighted (nrub, Poor Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	CN Row Cr % 0% 0% 0% 0% 0% 0% CN Row Cr %	0.00 93 ops, Good Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Basin Predev R5-R13 0.0937 Acres Total Mil (sq) 0.0001 DCIA 0.00% Roads Without Curb or Sidewalk HSG B Basin Predev R14-R16	TOTAL TOTAL Land Use Roads Dirt ROW Lawns/fields Natural Conditions TOTAL HSG Rating HSG A HSG B HSG C HSG D TOTAL Land Use Roads	Acres 0.0579 0.0358 0.0 0.00 0.0937 % Area 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0579	Imper % 100% 0% 0% 0% Imper	0.0 0.06 rvious Acres 0.06 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.06 rvious Acres 0.06	Dirt R % 0% 100% 0% Dirt R Dirt R % 0%	0.0 0.03 0ad, Acres 0.0 0.0 0.0 0.0 0.0 0.04 0ad, Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Gravel % 0% 0% 0% Gravel Gravel %	0.0 0.0 0.0 Acres 0.0	Desert Sh % 0% 0% 0% 0% Desert Sh Desert Sh %	0.0 0.0 Weighted (nrub, Poor Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	CN Row Cr % 0% 0% 0% 0% 0% CN Row Cr % CN Row Cr %	0.0 0.00 93 ops, Good Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Basin Predev R5-R13 0.0937 Acres Total Mil (sq) 0.0001 DCIA 0.00% Roads Without Curb or Sidewalk HSG B Basin Predev R14-R16 0.0937	TOTAL TOTAL Land Use Roads Dirt ROW Lawns/fields Natural Conditions TOTAL HSG Rating HSG A HSG B HSG C HSG D TOTAL Land Use Roads Dirt ROW	Acres 0.0579 0.0358 0.0 0.00 0.00 0.0937 % Area 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0579 0.0358	Imper % 100% 0% 0% 0% Imper	0.0 0.06 rvious Acres 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.06 rvious Acres 0.06 0.06	Dirt R % 0% 0% 0% 0% Dirt R Dirt R % 0% 100%	0.0 0.03 0ad, Acres 0.0 0.0 0.0 0.0 0.0 0.04 0ad, Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Gravel % 0% 0% 0% Gravel Gravel % 0%	0.0 0.0 0.0 Acres 0.0	Desert Sh % 0% 0% 0% 0% Desert Sh Desert Sh % 0% 0%	0.0 0.0 Weighted (nrub, Poor Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	CN Row Cr % 0% 0% 0% 0% 0% CN Row Cr % CN Row Cr %	0.0 0.00 93 ops, Good Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Basin Predev R5-R13 0.0937 Acres Total Mil (sq) 0.0001 DCIA 0.00% Roads Without Curb or Sidewalk HSG B Basin Predev R14-R16 0.0937 Acres	TOTAL TOTAL Land Use Roads Dirt ROW Lawns/fields Natural Conditions TOTAL HSG Rating HSG A HSG B HSG C HSG D TOTAL Land Use Roads Dirt ROW Lawns/fields	Acres 0.0579 0.0358 0.0 0.00 0.0937 % Area 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0579 0.0358 0.0 0.0358 0.0 0.0579	Imper % 100% 0% 0% 0% Imper % 100% 0%	0.0 0.06 rvious Acres 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.06 rvious Acres 0.06 0.06 0.0 0.0	Dirt R % 0% 100% 0% Dirt R Dirt R % 0% 100% 0%	0.0 0.03 0ad, Acres 0.0 0.0 0.0 0.0 0.0 0.04 0ad, Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Gravel % 0% 0% 0% 0% Gravel Gravel % 0% 0%	0.0 0.0 0.0 Acres 0.0	Desert Sh % 0% 0% 0% 0% 0% Desert Sh % Desert Sh % 0% 0% 0%	0.0 0.0 Weighted (nrub, Poor Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	CN Row Cr % 0% 0% 0% 0% 0% CN Row Cr % CN Row Cr %	0.0 0.00 93 ops, Good Acres 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

	v											
PROJECT:		Bergin Ln										
PROJECT#:		7130699										
CLIENT:		City of Bloom	mfield									
LAND STATUS:		Pre-Develop	ment								17-M	lay-22
RUNOFF CURVE	E NUMBERS											
HSG		Dirt Road	Gravel Road	Desert Shrub	Row Crops							
Rating	Impervious			Poor	Good							
HSG A	98	72	76	63	67							
HSG B	98	82	85	77	78							
HSG C	98	87	89	85	85							
HSG D	98	89	91	88	89							
LAND USE AREA	A SUMMARY & WEIG	HTED CURV	E NUMBE	R CALCULA	TIONS		•	1	ŕ			1
0.0001	TOTAL	0.0937		0.06		0.04		0.0		0.00		0.0
DCIA			Impervious		Dirt R	oad,	Gravel	l Road,	Desert Shrub, Poor		Row Crops, Good	
0.00%	HSG Rating	% Area		Acres		Acres		Acres		Acres		Acres
	HSG A	100.0%		0.1		0.0		0.0		0.0		0.0
Roads Without	HSG B	0.0%		0.0		0.0		0.0		0.0		0.0
Curb or Sidewall	HSG C	0.0%		0.0		0.0		0.0		0.0		0.0
HSG A	HSG D	0.0%		0.0		0.0		0.0		0.0		0.0
	TOTAL			0.06		0.04		0.0		0.0		0.00
										Weighted (CN	88
			Impe	rvious	Dirt Road,		Gravel Road,		Desert Shrub, Poor		Row Cre	ops, Good
Basin	Land Use	Acres	%	Acres	%	Acres	%	Acres	%	Acres	%	Acres
Postdev Roads	Roads	0.0937	100%	0.09	0%	0.0	0%	0.0	0%	0.0	0%	0.0
0.0937	Gravel Lots	0.0000	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
Acres	Lawns/fields	0.0000	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
Total Mil (sq)	Natural Conditions	0.00	0%	0.0	0%	0.0	0%	0.0	0%	0.0	0%	0.0
0.0001	TOTAL	0.094		0.09		0.00		0.0		0.00		0.0
DCIA			Impe	rvious	Dirt Road,		Gravel Road,		Desert Shrub, Poor		Row Crops, Good	
0.00%	HSG Rating	% Area		Acres		Acres		Acres		Acres		Acres
	HSG A	0.0%		0.0		0.0		0.0		0.0		0.0
ALL POSTDEV	HSG B	100.0%		0.1		0.0		0.0		0.0		0.0
ROADS	HSG C	0.0%		0.0		0.0		0.0		0.0		0.0
	HSG D	0.0%		0.0		0.0		0.0		0.0		0.0
	TOTAL			0.09		0.00		0.0		0.0		0.00
										Weighted (CN	98
Table 402-7 Roughness Coefficients (Manning's "n") for Sheet Flow

Source: NRCS, 2010, "Part 630 Hydrology, National Engineering Handbook, Chapter 15 Time of Concentration", Table 15-1, p. 15-6.

http://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=27002.wba

Surface description	"n" ^{1/}					
Smooth surfaces (concrete, asphalt,						
gravel, or bare soil)	0.011					
Fallow (no residue)	.0.05					
Cultivated soils:0.						
Residue cover ≤20%	.0.06					
Residue cover >20%	.0.17					
Grass:						
Short grass prairie	.0.15					
Dense grasses ^{2/}	.0.24					
Bermuda grass	.0.41					
Range (natural)	.0.13					
Woods: ^{3/}						
Light underbrush	.0.40					
Dense underbrush	.0.80					
 ^{1/} The "n" values are a composite of information compiled by Engman (1986). ^{2/} Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures. ^{3/} When selecting "n", consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow. 						

Table 1.—Manning roughness coefficients, n¹

			Manning's
I	. C	osed conduits:	n range -
	B.	Corrugated-metal pipe or pipe-arch: 1. 234 by 16-in, corrugation (riveted pipe); 3	0.011-0.013
		 a. Plain or fully coated b. Paved invert (range values are for 25 and 50 percent) 	0.024
		of circumference paved):	
		(1) Flow Juli depth (2) Flow 0.8 depth	0.021-0.018
		(3) Flow 0.6 depth	0.019-0.013
	0	2. 6 by 2-in. corrugation (field bolted)	0.03
	D	Cast-iron pipe, uncosted	0.012-0.014
	E.	Steel pipe	0.009-0.011
	F.	Brick	0.014-0.017
	ч.	1. Wood forms, rough	0.015-0.017
		2. Wood forms, smooth	0.012-0.014
	Ħ.	Cemented rubble masonry walls:	0.012-0.013
		1. Concrete floor and top	0.017-0.022
	т	2. Natural floor	0.019 - 0.025 0.015 - 0.017
	Ĵ.	Vitrified clay liner plates	0.015
п.	O	en channels, lined 4 (straight alinement): 5	
	A.	Concrete, with surfaces as indicated:	0 013-0 017
		2. Trowel finish	0.012-0.014
		3. Float finish	0.013-0.015
		4. Float mish, some gravel on bottom	0.015-0.017 0.016-0.019
		6. Gunite, wavy section	0.018-0.022
	В.	Concrete, bottom float finished, sides as indicated:	0 015-0 017
		2. Random stone in mortar	0.017-0.020
		3. Cement rubble masonry	0.020-0.025
		4. Cement rubble masonry, plastered	0.016-0.020 0.020-0.030
	C.	Gravel bottom, sides as indicated:	0.020 0.000
		1. Formed concrete	0.017-0.020
		3. Dry rubble (riprap)	0. 023-0. 023
	D.	Brick	0.014-0.017
	Ŀ.	Asposit: 1. Smooth	0.013
	-	2. Rough	0.016
	r.	Wood, planed, clean	0. 011-0. 013
	.	1. Good section.	0.017-0.020
		2. Irregular section	0. 022-0. 027
П.	Op	en channels, excavated 4 (straight alinement, ⁵ natural	
	A.	Earth, uniform section:	
		1. Clean, recently completed	0.016-0.018
		2. Clean, after weathering	0.018 - 0.020 0.022 - 0.027
		4. In gravelly soil, uniform section, clean	0. 022-0. 025
	B.	Earth, fairly uniform section:	
		2. Grass, some weeds	0.022 = 0.025 0.025 = 0.030
		Dense weeds or aquatic plants in deep channels	0.030-0.035
		4. Sides clean, gravel bottom	0.025-0.030
	C.	Dragline excavated or dredged:	0.000-0.010
		1. No vegetation	0.028-0.033
	D.	Rock:	0. 035-0. 050
	•	1. Based on design section	0,035
	1	2. Based on actual mean section:	025_0 040
	-	b. Jagged and irregular	0.040-0.045
	E.	Channels not maintained, weeds and brush uncut:	0.00.0.10
		2. Clean bottom, brush on sides	0.05-0.12
		3. Clean bottom, brush on sides, highest stage of flow	0.07-0.11
		 Dense brush, high stage 	0.10-0.14

Footnotes to table 1 appear at the top of page 101. 12.

..... 1

IV	. H	ighway channels and swales with maintained vegetation 67	50-	
	A	(values shown are for velocities of 2 and 6 f.p.s.): Depth of flow up to 0.7 foot:	Manning's n range ²	
		 b. Length 4–6 inches. 	0.07-0.045 0.09-0.05	
		2. Good stand, any grass:	0 10 0 00	
		 a. Length about 12 inches b. Length about 24 inches 3. Fair stand, any grass: 	0. 18-0. 09 0. 30-0. 15	
	R	a. Length about 12 inches b. Length about 24 inches Denth of flow 0.71 5 feet:	0.14-0.08 0.25-0.13	
	D.	1. Bermudagrass, Kentucky bluegrass, buffalograss:		
		a. Mowed to 2 inches b. Length 4 to 6 inches	0.05-0.035 0.06-0.04	
		 2. Good stand, any grass: a. Length about 12 inches b. Length about 24 inches 	0.12-0.07	
		 3. Fair stand, any grass: a. Length about 12 inches. b. Length about 24 inches. 	0.10-0.06 0.17-0.09	
W	Q4	and and emportune suffering		
۰.	A.	Concrete gutter, troweled finish	0.012	
	B.	Asphalt pavement:		
		1. Smooth texture	0.013	
	C	2. Rough texture	0.016	
	U.	1. Smooth	0.013	
		2. Rough	0.015	
	D.	Concrete pavement:		
		1. Float finish	0.014	
	E.	For gutters with small slope, where sediment may accu-	0.010	
		mulate, increase above values of n by	0.002	

¥1.	A	Minor streams (surface width at flood stage less than 100		
		ft.):		
		1. Fairly regular section:	0 000 0 005	
		a. Some grass and weeds, little of no brush	0. 030-0. 035	
		greater than weed height	0.035-0.05	
		c. Some weeds, light brush on banks	0. 035-0. 05	
		d. Some weeds, heavy brush on banks	0.05-0.07	
		e. Some weeds, dense willows on balks.	0.00-0.08	
		at high stage, increase all above values by	0.01-0.02	
		2. Irregular sections, with pools, slight channel meander;		
		increase values given in 1a-e about.	0.01-0.02	
		usually steep, trees and brush along banks sub- merged at high stage:		
		a. Bottom of gravel, cobbles, and few boulders	0.04-0.05	
	D	b. Bottom of cobbles, with large boulders.	0.05-0.07	
	D.	Flood plains (aujacent to natural scieanis).		
		1. Pasture, no pruso:		
		a. Short grass	0. 030-0. 035	
		 Pasture, no brush: a. Short grass. b. High grass. 	0. 030-0. 035 0. 035-0. 05	
		1. Pasture, no brush: a. Short grass. b. High grass. 2. Cultivated areas:	0. 030-0. 035 0. 035-0. 05 0. 03-0. 04	
		 Pasture, no orusn: a. Short grass. b. High grass. c. Cultivated areas: 	0. 030-0. 035 0. 035-0. 05 0. 03-0. 04 0. 035-0. 045	
		 Pasture, no brush: a. Short grass. b. High grass. 2. Cultivated areas: 	0. 030-0. 035 0. 035-0. 05 0. 03-0. 04 0. 035-0. 045 0. 04-0. 05	
		 Pasture, no brush: a. Short grass. b. High grass. 2. Cultivated areas: 	0. 030-0. 035 0. 035-0. 05 0. 03-0. 04 0. 035-0. 045 0. 04-0. 05 0. 05-0. 07	
		 Pasture, no brush: a. Short grass. b. High grass. 2. Cultivated areas: 	0. 030-0. 035 0. 035-0. 05 0. 03-0. 04 0. 035-0. 045 0. 04-0. 05 0. 05-0. 07 0. 05-0. 06	
		 Pasture, no brush: a. Short grass. b. High grass. 2. Cultivated areas: 	0. 030-0. 035 0. 035-0. 05 0. 035-0. 045 0. 045-0. 045 0. 04-0. 05 0. 05-0. 07 0. 05-0. 06 0. 06-0. 08	
		 Pasture, no brush: a. Short grass. b. High grass. c. Ultivated areas: 	0. 030-0. 035 0. 035-0. 05 0. 035-0. 045 0. 04-0. 05 0. 04-0. 05 0. 05-0. 07 0. 05-0. 06 0. 06-0. 08	
		 Pasture, no brush: a. Short grass. b. High grass. c. Ultivated areas: 	0. 030-0. 035 0. 035-0. 05 0. 035-0. 045 0. 04-0. 05 0. 05-0. 07 0. 05-0. 06 0. 06-0. 08 0. 07-0. 11 0. 10-0. 16	
		 Pasture, no brush: a. Short grass. b. High grass. c. Ultivated areas: 	0. 030-0. 035 0. 035-0. 05 0. 035-0. 04 0. 035-0. 045 0. 04-0. 05 0. 05-0. 07 0. 05-0. 06 0. 06-0. 08 0. 06-0. 08 0. 07-0. 11 0. 10-0. 16 0. 15-0. 20	
		 Pasture, no brush: a. Short grass. b. High grass. c. Ultivated areas: 	$\begin{array}{c} 0.030-0.035\\ 0.035-0.05\\ 0.03-0.04\\ 0.035-0.045\\ 0.045\\ 0.04-0.05\\ 0.05-0.07\\ 0.05-0.06\\ 0.06-0.08\\ 0.06-0.08\\ 0.07-0.11\\ 0.10-0.16\\ 0.15-0.20\\ \end{array}$	
		 Pasture, no brush: a. Short grass. b. High grass. c. Ultivated areas: 	$\begin{array}{c} 0.030-0.035\\ 0.035-0.05\\ 0.035-0.04\\ 0.035-0.045\\ 0.045\\ 0.045\\ 0.04-0.05\\ 0.05-0.07\\ 0.05-0.06\\ 0.06-0.08\\ 0.07-0.11\\ 0.10-0.16\\ 0.15-0.20\\ 0.04-0.05\\ 0.06 \end{array}$	
		 Pasture, no brush: a. Short grass. b. High grass. c. Ultivated areas: 	$\begin{array}{c} 0.030-0.035\\ 0.035-0.05\\ 0.035-0.04\\ 0.035-0.045\\ 0.045\\ 0.045\\ 0.05-0.05\\ 0.05-0.07\\ 0.05-0.08\\ 0.06-0.08\\ 0.07-0.11\\ 0.10-0.16\\ 0.15-0.20\\ 0.04-0.05\\ 0.06-0.08\\ \end{array}$	
		 Pasture, no brush: a. Short grass. b. High grass. c. Ultivated areas: 	$\begin{array}{c} 0.030-0.035\\ 0.035-0.05\\ 0.035-0.045\\ 0.035-0.045\\ 0.045\\ 0.04-0.05\\ 0.05-0.07\\ 0.05-0.08\\ 0.06-0.08\\ 0.07-0.11\\ 0.10-0.16\\ 0.15-0.20\\ 0.04-0.05\\ 0.06-0.08\\ \end{array}$	
		 Pasture, no brush: a. Short grass. b. High grass. c. Ultivated areas: 	$\begin{array}{c} 0.030-0.035\\ 0.035-0.05\\ 0.035-0.045\\ 0.035-0.045\\ 0.05-0.05\\ 0.05-0.07\\ 0.05-0.08\\ 0.05-0.08\\ 0.07-0.11\\ 0.10-0.16\\ 0.15-0.20\\ 0.04-0.05\\ 0.06-0.08\\ 0.07-0.11\\ 0.10-0.12\\ 0.04-0.05\\ 0.06-0.08\\ 0.10-0.12\\ 0.04-0.05\\ 0.05-0.08\\ 0.05-0.0$	
		 Pasture, no brush: a. Short grass. b. High grass. c. Ultivated areas: 	$\begin{array}{c} 0.030-0.035\\ 0.035-0.05\\ 0.035-0.045\\ 0.045\\ 0.04-0.05\\ 0.05-0.07\\ 0.05-0.06\\ 0.06-0.08\\ 0.07-0.11\\ 0.10-0.16\\ 0.15-0.20\\ 0.04-0.05\\ 0.06-0.08\\ 0.07-0.01\\ 0.10-0.12\\ 0.12-0.16\\ \end{array}$	
	c.	 Pasture, no brush: a. Short grass. b. High grass. c. Ultivated areas: 	$\begin{array}{c} 0.030-0.035\\ 0.035-0.05\\ 0.035-0.045\\ 0.04-0.05\\ 0.05-0.06\\ 0.05-0.07\\ 0.05-0.08\\ 0.06-0.08\\ 0.07-0.11\\ 0.10-0.16\\ 0.15-0.20\\ 0.04-0.05\\ 0.06-0.08\\ 0.07-0.11\\ 0.10-0.12\\ 0.12-0.16\\ 0.12-0.16\\ 0.12-0.16\\ 0.12-0.16\\ 0.05\\ 0.06-0.08\\ 0.06$	
	c.	 Pasture, no brush: a. Short grass. b. High grass. c. Ultivated areas: 	$\begin{array}{c} 0.030-0.035\\ 0.035-0.05\\ 0.035-0.04\\ 0.035-0.045\\ 0.045\\ 0.045\\ 0.05-0.06\\ 0.05-0.06\\ 0.06-0.08\\ 0.07-0.11\\ 0.10-0.16\\ 0.15-0.20\\ 0.04-0.05\\ 0.06-0.08\\ 0.04-0.05\\ 0.06-0.08\\ 0.10-0.12\\ 0.12-0.16\\ \end{array}$	
	c.	 Pasture, no brush: a. Short grass. b. High grass. c. Ultivated areas: 	$\begin{array}{c} 0.030-0.035\\ 0.035-0.05\\ 0.035-0.04\\ 0.035-0.045\\ 0.045\\ 0.045\\ 0.05-0.06\\ 0.05-0.06\\ 0.06-0.08\\ 0.07-0.11\\ 0.10-0.16\\ 0.15-0.20\\ 0.04-0.05\\ 0.06-0.08\\ 0.10-0.12\\ 0.12-0.16\\ \end{array}$	
	c.	 Pasture, no brush: a. Short grass. b. High grass. c. Ultivated areas: 	$\begin{array}{c} 0.030-0.035\\ 0.035-0.05\\ 0.035-0.04\\ 0.035-0.045\\ 0.04-0.05\\ 0.04-0.05\\ 0.05-0.07\\ 0.05-0.08\\ 0.06-0.08\\ 0.07-0.11\\ 0.10-0.16\\ 0.15-0.20\\ 0.04-0.05\\ 0.06-0.08\\ 0.15-0.20\\ 0.04-0.12\\ 0.12-0.16\\ 0.12-0.16\\ 0.12-0.16\\ 0.12-0.16\\ 0.020\\ 0.020\\ 0.010-0.00\\ 0.010-0.00\\ 0.010-0.00\\ 0.010-0.00\\ 0.010-0.00\\ 0.010-0.00\\ 0.010-0.00\\ 0.010-0.00\\ 0.010-0.00\\ 0.010-0.00\\ 0.000\\$	
	c.	 Pasture, no brush: a. Short grass. b. High grass. c. Ultivated areas: 	$\begin{array}{c} 0.030-0.035\\ 0.035-0.05\\ 0.035-0.045\\ 0.035-0.045\\ 0.05-0.07\\ 0.05-0.07\\ 0.05-0.08\\ 0.06-0.08\\ 0.07-0.11\\ 0.10-0.16\\ 0.15-0.20\\ 0.04-0.05\\ 0.06-0.08\\ 0.07-0.11\\ 0.12-0.16\\ 0.12-0.16\\ 0.12-0.16\\ 0.12-0.16\\ 0.12-0.16\\ 0.020000000000000000000000000000000000$	
	c.	 Pasture, no brush: a. Short grass. b. High grass. c. Ultivated areas: 	$\begin{array}{c} 0.030-0.035\\ 0.035-0.05\\ 0.035-0.045\\ 0.035-0.045\\ 0.05-0.07\\ 0.05-0.07\\ 0.05-0.08\\ 0.06-0.08\\ 0.07-0.11\\ 0.10-0.16\\ 0.15-0.20\\ 0.04-0.05\\ 0.06-0.08\\ 0.07-0.11\\ 0.12-0.16\\ 0.12-0.16\\ 0.12-0.16\\ 0.12-0.16\\ 0.12-0.16\\ 0.12-0.16\\ 0.020000000000000000000000000000000000$	
	c.	 Pasture, no brush: a. Short grass. b. High grass. c. Ultivated areas: 	0. 030-0. 035 0. 035-0. 05 0. 035-0. 045 0. 035-0. 045 0. 045-0. 05 0. 05-0. 06 0. 06-0. 08 0. 07-0. 11 0. 10-0. 16 0. 15-0. 20 0. 04-0. 05 0. 06-0. 08 0. 10-0. 12 0. 12-0. 16 0. 12-0. 16 0. 12-0. 16	
	c.	 Pasture, no brush: a. Short grass. b. High grass. c. Ultivated areas: 	0. 030-0. 035 0. 035-0. 05 0. 035-0. 045 0. 035-0. 045 0. 045-0. 05 0. 05-0. 06 0. 06-0. 08 0. 07-0. 11 0. 10-0. 16 0. 15-0. 20 0. 04-0. 05 0. 06-0. 08 0. 10-0. 12 0. 12-0. 16 0. 12-0. 12 0. 12-0. 16 0. 12-0. 12 0. 12-0. 16 0. 12-0. 12 0. 12-0. 1	

Table 402-9 Kerby Equation Retardance Coefficient Values

Source: TxDOT, July 2016, "Hydraulic Design Manual", Table 4-5, p. 4-38. http://onlinemanuals.txdot.gov/txdotmanuals/hyd/index.htm

Generalized Terrain Description	Dimensionless Retardance Coefficient (N)
Pavement	0.02
Smooth, bare, packed soil	0.10
Poor grass, cultivated row crops, or moderately rough packed surfaces	0.20
Pasture, average grass	0.40
Deciduous forest	0.60
Dense grass, coniferous forest, or deciduous forest with deep litter	0.80

402.9.4 The Kerby-Kirpich Method

The Upland Method is used for the ungullied portion of the primary watercourse when the overland flow length is 300 feet or less. The Kerby Equation should be used for the ungullied portions when the overland flow length is greater than 300 feet. The Kirpich Equation is used for the gullied portion of the watercourse, including those drained by manmade conveyances such as curb and gutter, storm drains and channels. The Tc result from each equation are added to obtain the watershed total Tc, thus the name "Kerby-Kirpich" Method.

402.9.5 The Iterative Method Within the Stream Hydraulic Method

The Iterative Method within the Stream Hydraulic Method is used when calculating peak discharges by the Unit Hydrograph Method in a watercourse where a defined stream channel is evident in the field or aerial photography (or a blue line, solid or broken, on a quadrangle topo map) and is the dominant runoff conveyance in the watershed. The Iterative Method within the Stream Hydraulic Method is applicable principally on larger basins where the longest flow path is dominated by channel flow, but that are small enough not to warrant subdividing the basin, or in basins where gullying is evident all the way to the top of the basin.

The engineer must measure or estimate the hydraulic properties of the stream channel. The total watercourse must be divided into channel reaches which are hydraulically similar within themselves. Often, hydraulically similar reaches will have similar slopes. Dramatic slope changes should be apparent from both topography and channel shape. Field reconnaissance measurements of the stream channel are suggested; however, sometimes direct measurements are not possible. The engineer must determine the slope, channel cross section, and an appropriate hydraulic roughness coefficient for each channel reach using the best information available within the limits of access, time, and budgets (topographic maps, aerial photography,

APPENDIX C

TIME OF CONCENTRATION CALCULATIONS

PRE-DEVELOPMENT CONDITION REPORTS

POST-DEVELOPMENT CONDITION REPORTS

Bergin Lane Ryan Vallejos 3/21/2022 Watesheld Pre-Development Voc. Experter automation at the status	Project Name	Ву				Date			
Watersheld 0 Pre-Development Post-Development Basin 1 X Sheet Flow 1.) Surface Description (Table 3-1) 2.) Manning's Roughness Coefficient, n 3.) Flow Length, L (total L < 300 ft) 4.) Two-Year 24-Hour Rainfall, P2 in n 1.1 Sheld Concentrated How Shallow Concentrated How Shallow Concentrated How 7.) Surface Description (Figure 15-4 or Table 15-3) 8.) Flow Length, L 9.) Watercourse Slope, 5 10.) Average Velocity, V (Figure 15-4 or Table 15-3) 11.) T _i = L/3600 V Compute T _i hr 0.000 Channel Flow (Interative Method Within The Stream Hydraulic Method) 12.) Cross Sectional Flow Area, A 13.) Wetted Perimetre, P _a 14.) Hydraulic Radus, R = A/P _w Compute T _i 15.) Channel Slope, S 16.) Anoning's Roughness Coefficient, n 17.) Y = (1.486/n) R^{406/7} S^{405} 18.) Flow Length, L 19.) T _i = L/3600 V Compute T _i hr 10.00 + 0.000 12.) Cross Sectio	Bergin Lane	Ryan Vallejos				3/21/2022	<u>2</u>		
Basin 1 X u with final degree we takent. Sheet Flow Segment ID 1.) Surface Description (Table 3-1) 0.035 2.) Manning's Roughness Coefficient, n 0.035 3.) Flow Uength, L (total L < 300 ft) ft 0.007 6.) T _i = 0.007(nL)^{A:09/P2,AOS + SA ^{DA*} Compute T _i hr 0.15 5.) Land Slope, S ft/ft 0.0047 6.) T _i = 0.007(nL)^{A:09/P2,AOS + SA ^{DA*} Compute T _i hr 0.007 + 0.000 = 0.149 Shallow Concentrated Flow Segment ID 9.) Watercores slope, S ft/ft	Watershed ID	Pre-Developr	nent	Post-De	evelopment	Note: Space for as	many as three segr	nents per f	low type can
Sheet Flow Segment ID 1.) Surface Description (Table 3-1) 2.) Manning's Roughness Coefficient, n 3.) Flow Length, L (total L < 300 ft) 4.) Two-Year 24-Hour Rainfall, P ₂ 5.) Land Slope, S 6.) T ₁ = 0.007(nL)A ^{0.80} /P ₂ A ^{0.5} + SA ^{0.2} Compute T ₁ br Compute T ₁ br Compute T ₁ br Compute T ₁ compute T ₁ br Compute T ₁ compute T ₁ br Compute T ₁ compute T ₁ c		X				be	e used for each wor	ksheet.	
Surface Description (Table 3-1) Segment ID 0.035 1.) Surface Description (Table 3-1) 0.035 0.035 2.) Manning's Roughness Coefficient, n 0.035 1.1 3.) Flow Length, L (total L < 300 ft)	Sheet Flow								
1.) Surface Description (1 able 3-1) 0.035 2.) Manning's Roughness Coefficient, n 0.035 3.) Flow Length, L (total L < 300 ft)			Segmei	nt ID					
2.) Manning's Roughness Coefficient, n 3.) Flow Length, L (total L < 300 ft) 5.) Land Slope, S 5.) Land Slope, S 6.) $T_r = 0.007(nL)^{A^{0.0}}/P_x^{A^{0.5}} + s_x^{A^{0.7}}$ Compute T, hr 6.) $T_r = 0.007(nL)^{A^{0.0}}/P_x^{A^{0.5}} + s_x^{A^{0.7}}$ Compute T, hr 7.) Surface Description (Figure 15-4 or Table 15-3) 8.) Flow Length, L 9.) Watercourse Slope, S 11.) $T_r = L/3600 V$ Compute T, hr 10.) Average Velocity, V (Figure 15-4 or Table 15-3) 11.) $T_r = L/3600 V$ Channel Flow (Interative Method Within The Stream Hydraulic Method) 7.) Surface Description and the stream Hydraulic Method (0.00) + 0.00 + 0.00 = 0.000 + 0.00 + 0.00 + 0.00 = 0.000 + 0.00 + 0.00 + 0.00 = 0.000 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00 = 0.000 + 0.	1.) Surface Description (Table 3-1)								
3) Flow Length, L (total L < 300 ft) ft 300 4.) Two-Year 24-Hour Rainfall, P ₂ in 1.1 5.) Land Stope, S ft/ft 0.047 6.) T _x = 0.007(nL) ^{0.80} /P ₂ . ^{A05} + 5. ^{A03.4} Compute T ₁ hr 0.15 + 0.00 + 0.00 = 0.149 Shallow Concentrated Flow 7.) Surface Description (Figure 15-4 or Table 15-3) 8.) Flow Length, L ft 9.) Watercourse Stope, S ft/ft 10.) Average Velocity, V (Figure 15-4 or Table 15-3) 11.) T _x = L/3600 V Compute T _x hr 0.00 + 0.00 + 0.00 = 0.000 Channel Flow (Interative Method Within The Stream Hydraulic Method) 12.) Cross Sectional Flow Area, A ft ² 13.) Wetted Periuter, P _w ft 0.00 0.00 14.) Hydraulic Radius, R = A/P _w Compute R ft 0.00 15.) Channel Slope, S for ft/ft 10.1 Average Velocity, V (Figure 15.4 or Table 15.3) 16.) How Length, L ft 0.00 + 0.00 + 0.00 = 0.000 Channel Flow (Interative Method Within The Stream Hydraulic Method) 12.) Cross Sectional Flow Area, A ft ² 13.) Wetted Periuter, P _w ft 0.00 14.) Hydraulic Radius, R = A/P _w Compute R ft 0.00 15.) Channel Slope, S for ft/ft 10.00 16.) Flow Length, L ft 10.00 17.) V = (1.486/n) R^{A067} S^{A0.5} ft/ft 10.00 20.) Flow Length, L ft 10.00 21.) Surface Slope, S ft 10.00 23.) Watershed or Subarea Travel Time (T _x or T _x) 23.) Watershed or Subarea Travel Time (T _x or T _x) 23.) Watershed or Subarea T, or T _x (add in steps 6, 11.19 and 22) ft min ft 6.804 23.) Sum of the Watershed/Subarea Travel Time (T _x or T _x) 23.) Sum of the Watershed Subarea T, or T _x (add in steps 6, 11.19 and 22) ft min ft 6.804 23.) Sum of the Watershed Subarea T, ft ft 10.00 23. Watershed or Subarea T, or T _x (add in steps 6, 11.19 and 22) ft m	2.) Manning's Roughness Coefficient, n				0.035				
4.) Two-Year 24-Hour Rainfall, P ₂ in 1.1 5.) Land Slope, S fr, $\frac{1.1}{0.047}$ in $\frac{1.1}{0.047}$ in $\frac{1.1}{0.047}$ in $\frac{1.1}{0.00}$ is $\frac{1.1}{0.00}$ in $\frac{1.1}{0.00}$ is $\frac{1.1}{0.00}$	3.) Flow Length, L (total L < 300 ft)			ft	300				
S.) Land Slope, S G.) $T_{t} = 0.007(nL)^{0.00} / P_{2}^{A03} + S^{A3.4} Compute T_{t} hr G.) T_{t} = 0.007(nL)^{0.00} / P_{2}^{A03} + S^{A3.4} Compute T_{t} hr Shallow Concentrated Flow Shallow Concentrated Flow Segment ID G.) Watersourse Slope, S How Length, L G.) Average Velocity, V (Figure 15-4 or Table 15-3) G.) Average Velocity, V (Figure 15-4 or Table 15-3) T.) T_{t} = L/3600 VCompute Tt hrG.) VCompute Tt hrG.) VChannel Flow (Interative Method Within The Stream Hydraulic Method)Channel Flow (Interative Method Within The Stream Hydraulic Method)12.) Cross Sectional Flow Area, AH2G.) VCompute RH, VH, VG.) VCompute RH, VG.) VCompute RH, VG.) VCompute RH, VC$	4.) Two-Year 24-Hour Rainfall, P ₂			in	1.1				
6.) $T_{t} = 0.007(nL)^{n.907} \overline{p_2}^{n.05} + S^{0.04}$ Compute T_{t} nr 0.15 + 0.00 + 0.00 = 0.149 Shallow Concentrated Flow Segment ID	5.) Land Slope, S			ft/ft	0.047				
Shallow Concentrated Flow Shallow Concentrated Flow 7.) Surface Description (Figure 15-4 or Table 15-3) 8.) Flow Length, L 9.) Watercourse Slope, S 11.) T _t = L/3600 V Channel Flow (Interative Method Within The Stream Hydraulic Method) 12.) Cross Sectional Flow Area, A 13.) Wetted Perimeter, P _w 14.) Hydraulic Radius, R = A/P _w 15.) Channel Slope, S 15.) Channel Slope, S 16.) Manning's Roughness Coefficient, n 17.) V = (1.486/n) Rx ^{0.667} Sn ^{0.3} 18.) Flow Length, L 19.) T _t = L/3600 V 19.) T _t = L/3600 V 10.00 10.00 10.00 11.) T _t = L/3600 V 11.) T _t = L/3600 V 12.) Cross Sectional Flow Area, A 11.) T _t = L/3600 V 12.) Cross Sectional Flow Area, A 13.) Wetted Perimeter, P _w 14.) Hydraulic Radius, R = A/P _w 15.) Channel Slope, S 16.) Compute R 17.) V = (1.486/n) Rx ^{0.667} Sn ^{0.3} 18.) Flow Length, L 19.) T _t = L/3600 V 19.) Flow Length, L 20.) Flow Length, L 21.) Surface Slope, S 20.) Flow Length, L 21.) Surface Slope, S 22., T _t = (0.0078 x L ^{0.27} x Sx ^{0.3385})/60 Compute T _t 10.00 11.3 Jufrater Slope, S 23.) Watershed J Subarea T, or T _e (add in steps 6, 11, 19 and 22) 24.) Sum of Watershed I Step 23, T _c Compute T _t 11.340	6.) T ₄ = 0.007(nL)^ $0.80/P_2$ ^ $0.5 * S^{0.4}$	Compute T _t		, hr	0.15 +	0.00 +	0.00	= (0.149
Shallow Concentrated Flow Segment ID Segment ID Segment ID Segment ID Segment ID Segment ID Segment ID Segment ID Segment ID Segment ID 1.) $T_t = L/3600 \vee$ Compute T_t Segment ID 1.) $T_t = L/3600 \vee$ Channel Flow (Interative Method Within The Stream Hydraulic Method) 12.) Cross Sectional Flow Area, A The segment ID 12.) Cross Sectional Flow Area, A The segment ID 13.) Wetted Perimeter, P_w The segment ID 14.) Hydraulic Radius, $R = A/P_w$ Compute R 15.) Channel Slope, S 16.) Manning's Roughness Coefficient, n 17.) $V = (1.486/n) R^{n/667} S^{n/5}$ Compute T_t 19.) $T_t = L/3600 \vee$ Kirpich Equation Kirpich Equation 20.) Flow Length, L 21.) Surface Slope, S 22.) $T_t = (0.0078 \times L^{n/57} \times S^{n/388})/60$ Compute T_t 23.) Watershed Subarea T, or T _c (add in steps 6, 11.19 and 22) 24.) Sum of Watershed I Step 23, T _c Compute T_t 25.) Lag Time, $T_t = 0.60^* T_c$ Compute T_t Compute					0.120	0.00	0.00		
Segment ID Segment ID 7.) Surface Description (Figure 15-4 or Table 15-3) ft 8.) Flow Length, L ft 9.) Watercourse Slope, S ft/ft 10.) Average Velocity, V (Figure 15-4 or Table 15-3) ft/s 11.) $T_t = L/3600 V$ Compute T_t hr 0.00 Channel Flow (Interative Method Within The Stream Hydraulic Method) 12.) Cross Sectional Flow Area, A ft² 13.) Wetted Perimeter, P_w ft 14.) Hydraulic Radius, $R = A/P_w$ Compute R 15.) Channel Slope, S ft/ft 16.) Manning's Roughness Coefficient, n n 17.) V = (1.486/n) R^{0.667} S^{0.5} Compute V ft/s 18.) Flow Length, L ft 19.) T _t = L/3600 V Compute T_t hr 0.00 Kirpich Equation Segment ID 20.) Flow Length, L ft 21.) Surface Slope, S ft/ft 22.) T _t = (0.0078 x L^{0.77} x S^{0.365})/60 Compute T_t hr 0.004 0.00 20.) Flow Length, L ft/ft 21.) Surface Slope, S ft/ft 22.) T _t = (0.0078 x L^{	Shallow Concentrated Flow								
Segment ID Segment ID 3.) Flow Length, L ft 9.) Watercourse Slope, S ft/ft 10.) Average Velocity, V (Figure 15-4 or Table 15-3) ft/s 11.) $T_t = L/3600 \vee$ Compute T_t Channel Flow (Interative Method Within The Stream Hydraulic Method) 12.) Cross Sectional Flow Area, A Segment ID 13.) Wetted Perimeter, P _w ft 14.) Hydraulic Radius, R = A/P _w Compute R 15.) Channel Slope, S ft/ft 18.) Flow Length, L ft 19.) T _t = L/3600 V ft 10.000 0.00 15.) Channel Slope, S ft/ft 18.) Flow Length, L ft 19.) T _t = L/3600 V ft 20.) Flow Length, L ft 21.) Surface Slope, S ft/ft 22.) T _t = (0.0078 x L ^{0.0.7/x} x S ^{A03365})/60 Compute T _t 11.340 ft 21.3 Lorder Slope, S ft/ft 22.3.) Watershed or Subarea T _t or T _c (add in steps 6,11,19 and 22) 23.) Wa									
7.) Surface Description (Figure 15-4 or Table 15-3) 8.) Flow Length, L 9.) Watercourse Slope, S 10.) Average Velocity, V (Figure 15-4 or Table 15-3) 11.) $T_t = L/3600 V$ Compute T_t 12.) Cross Sectional Flow Area, A 12.) Cross Sectional Flow Area, A 13.) Wetted Perimeter, P _w 14.) Hydraulic Radius, R = A/P _w 15.) Channel Slope, S 16.) Manning's Roughness Coefficient, n 17.) V = (1.486/n) R^{0.667} S^{0.5} 16.) Manning's Roughness Coefficient, n 17.) V = (1.486/n) R^{0.667} S^{0.5} 17.) V = (1.486/n) R^{0.667} S^{0.5} 18.) Flow Length, L 19.) $T_t = L/3600 V$ 19.) $T_t = L/3600 V$ 10.00 10.00 10.00 11.) Surface Slope, S 11.) $T_t = L/3600 V$ 11.) Surface Slope, S 11.) $T_t = L/3600 V$ 11.) Surface Slope, S 12.) T _t = (0.0078 × L ^{0.077} × S^{0.385})/60 10.00 11.3 Addition Step 23, T _c 11.340 23.) Watershed or Subarea T _t or T _c (add in steps 6,11,19 and 22) 23.) Watershed or Subarea T _t or T _c (Compute T _L 11.340			Segme	nt ID					
8.) Flow Length, L ft 9.) Watercourse Slope, S ft/ft 10.) Average Velocity, V (Figure 15-4 or Table 15-3) ft/s 11.) $T_t = L/3600 V$ Compute T_t hr 0.00 + 0.00 + 0.00 = 0.000 Channel Flow (Interative Method Within The Stream Hydraulic Method) 12.) Cross Sectional Flow Area, A ft ² 13.) Wetted Perimeter, P _w ft 14.) Hydraulic Radius, R = A/P _w Compute R ft 0.00 0.00 0.00 15.) Channel Slope, S ft/ft 16.) Manning's Roughness Coefficient, n ft 17.) $V = (1.486/n) R^{0.667} S^{0.5}$ Compute V ft/s 0.00 0.00 0.00 18.) Flow Length, L ft 19.) $T_t = L/3600 V$ Compute T _t hr 0.00 + 0.00 = 0.000 Kirpich Equation Kirpich Equation 20.) Flow Length, L ft 21.) Surface Slope, S ft/ft 22.) $T_t = (0.0078 \times L^{A.0.77} \times S^{A.0385})/60$ Compute T _t hr 0.04 + 0.00 + 0.00 = 0.000 Sum of the Watershed JSubarea Travel Time (T _t or T _c) 23.) Watershed or Subarea T _t or T _c (add in steps 6,11,19 and 22) hr 0.189 24.) Sum of Watershed in Step 23, T _c Compute T _L min 6.804	7.) Surface Description (Figure 15-4 or Table 1	5-3)							
9.) Watercourse Slope, S 10.) Average Velocity, V (Figure 15-4 or Table 15-3) 11.) $T_t = L/3600 V$ Compute T_t 11.) $T_t = L/3600 V$ Channel Flow (Interative Method Within The Stream Hydraulic Method) 12.) Cross Sectional Flow Area, A 13.) Wetted Perimeter, P_w 14.) Hydraulic Radius, $R = A/P_w$ 15.) Channel Slope, S 16.) Manning's Roughness Coefficient, n 17.) $V = (1.486/n) R^{A^{0.67}} S^{A^{0.5}}$ 18.) Flow Length, L 19.) $T_t = L/3600 V$ Compute T_t 19.) $T_t = L/3600 V$ Kirpich Equation 20.) Flow Length, L 21.) Surface Slope, S 21.) Surface Slope, S 22.) $T_t = (0.0078 \times L^{A^{0.77}} \times S^{A^{0.385}})/60$ Compute T_t 23.) Watershed or Subarea T _t or T_c (add in steps 6,11,19 and 22) 23.) Watershed or Subarea T _t or T_c (add in steps 6,11,19 and 22) 23.) Watershed on Subarea T _t or T_c Compute T_t 23.) Lag Time, $T_t = 0.60 * T_c$ Compute T_t Compute $T_$	8.) Flow Length, L			ft					
10.) Average Velocity, V (Figure 15-4 or Table 15-3) 11.) $T_t = L/3600 V$ Compute T_t hr 0.00 + 0.00 + 0.00 = 0.000 Channel Flow (Interative Method Within The Stream Hydraulic Method) 12.) Cross Sectional Flow Area, A ft ² 13.) Wetted Perimeter, P _w ft 14.) Hydraulic Radius, R = A/P _w Compute R ft 0.00 0.00 15.) Channel Slope, S ft/ft 14.) Hydraulic Radius, R = A/P _w Compute R ft 0.00 0.00 15.) Channel Slope, S ft/ft 14.) Hydraulic Radius, R = A/P _w Compute V ft/s 16.) Manning's Roughness Coefficient, n 17.) V = (1.486/n) R^{0.667} S^{0.5} Compute V ft/s 18.) Flow Length, L 19.) $T_t = L/3600 V$ Compute T _t hr 0.00 + 0.00 = 0.000 Kirpich Equation 20.) Flow Length, L 21.) Surface Slope, S ft/ft 0.0177 22.) $T_t = (0.0078 \times L^{0.77} \times S^{-0.385})/60$ Compute T _t or T _c) 23.) Watershed or Subarea T _t or T _c (add in steps 6,11,19 and 22) hr 0.189 24.) Sum of Watershed in Step 23. T _c Compute T _t min 6.804	9.) Watercourse Slope, S			ft/ft					
11.) $T_t = L/3600 V$ Compute T_t hr 0.00 + 0.00 + 0.00 = 0.000 Channel Flow (Interative Method Within The Stream Hydraulic Method) Segment ID	10.) Average Velocity, V (Figure 15-4 or Table	15-3)		ft/s					
Channel Flow (Interative Method Within The Stream Hydraulic Method) 12.) Cross Sectional Flow Area, A 13.) Wetted Perimeter, P _w 14.) Hydraulic Radius, R = A/P _w 15.) Channel Slope, S 16.) Manning's Roughness Coefficient, n 17.) V = (1.486/n) RA ^{0.667} SA ^{0.5} 19.) T _t = L/3600 V Kirpich Equation 20.) Flow Length, L 20.) Flow Length, L 21.) Surface Slope, S 23.) Watershed or Subarea Travel Time (T _t or T _c) 23.) Watershed or Subarea T _t or T _c (add in steps 6,11,19 and 22) 24.) Sum of Watershed in Step 23, T _c 25.) Lag Time, T _t = 0.60 * T _c 26. Tormpute T _t 27. T _t = (0.007 × L ^{A,0.77} x SA ^{-0.385})/for the step 3, T _c 23.) Watershed in Step 23, T _c 24.) Sum of Watershed in Step 23, T _c 25.) Lag Time, T _t = 0.60 * T _c	11.) T _t = L/3600 V	Compute T _t		hr	0.00 +	0.00 +	0.00	= (0.000
Channel Flow (Interative Method Within The Stream Hydraulic Method) Segment ID 12.) Cross Sectional Flow Area, A 13.) Wetted Perimeter, P _w 14.) Hydraulic Radius, R = A/P _w Compute R 14.) Hydraulic Radius, R = A/P _w Compute R 15.) Channel Slope, S 16.) Manning's Roughness Coefficient, n 17.) V = (1.486/n) R^{0.667} S^{0.5} Compute V 17.) V = (1.486/n) R^{0.667} S^{0.5} Compute V 19.) T _t = L/3600 V Kirpich Equation 20.) Flow Length, L 21.) Surface Slope, S 20.) Flow Length, L 21.) Surface Slope, S 22.) T _t = (0.0078 x L^{0.77} x S^{0.385})/60 Compute T _t 1.) Surface Slope, S 23.) Watershed of Subarea Travel Time (T _t or T _c) 23.) Watershed or Subarea T _t or T _c (add in steps 6,11,19 and 22) 24.) Sum of Watershed in Step 23, T _c 25. Lag Time, T _t = 0.60 * T _c Compute T _t 1.340 Compute T _t Compute C		 -						_	
Segment ID 12.) Cross Sectional Flow Area, A ft ² 13.) Wetted Perimeter, P _w ft 14.) Hydraulic Radius, R = A/P _w Compute R ft 15.) Channel Slope, S ft/ft 16.) Manning's Roughness Coefficient, n ft/ft 17.) V = (1.486/n) R^{0.667} S^{0.5} Compute V ft/s 19.) T _t = L/3600 V ft/ft Segment ID Segment ID 225.49 21.) Surface Slope, S Compute T _t 10.000 Segment ID 22.) T _t = (0.0078 x L^{0.77} x S^{-0388})/60 Compute T _t 10.000 Sum of the Watershed/Subarea Travel Time (T _t or T _c) 23.) Watershed or Subarea T _t or T _c (add in steps 6,11,19 and 22) hr Animal Compute T _t Min 0.89 Sum of Watershed in Step 23, T _c Compute T _t Min 0.89 Sum of Watershed in Step 23, T _c Compute T _t 2.	Channel Flow (Interative Method Within T	The Stream Hy	draulic	Method	d)				
Segment ID Segment ID Image: compute rest in the second sec			_						
12.) Cross Sectional Flow Area, A ft ² 13.) Wetted Perimeter, Pw ft 14.) Hydraulic Radius, R = A/Pw Compute R ft 15.) Channel Slope, S ft/ft 16.) Manning's Roughness Coefficient, n 0.00 17.) V = (1.486/n) R^{0.667} S^{0.5} Compute V 18.) Flow Length, L ft 19.) T _t = L/3600 V Compute T _t 19.) T _t = L/3600 V Compute T _t 11.) Surface Slope, S ft/ft 20.) Flow Length, L ft 22.) T _t = (0.0078 x L^{0.77} x S^{-0.385})/60 Compute T _t 12.) Surface Slope, S ft/ft 21.) Surface Slope, S ft/ft 22.) T _t = (0.0078 x L^{0.77} x S^{-0.385})/60 Compute T _t Mr 0.04 Sum of the Watershed/Subarea Travel Time (T _t or T _c) 23.) Watershed or Subarea T _t or T _c (add in steps 6,11,19 and 22) 24.) Sum of Watershed in Step 23, T _c Compute T _t 25. Lag Time, T _t = 0.60 * T _c Compute T _t			Segme	nt ID					
13.) Wetted Perimeter, P_w ft ft 0.00 0.00 14.) Hydraulic Radius, $R = A/P_w$ Compute R ft 0.00 0.00 15.) Channel Slope, S ft/ft 0.00 0.00 0.00 16.) Manning's Roughness Coefficient, n ft/ft 0.00 0.00 0.00 17.) V = (1.486/n) R^{0.667} S^{0.5} Compute V ft/s 0.00 0.00 0.00 18.) Flow Length, L ft ft 0.00 0.00 0.00 0.00 19.) T _t = L/3600 V Compute T _t hr 0.00 + 0.00 = 0.000 Kirpich Equation Segment ID 225.49	12.) Cross Sectional Flow Area, A			ft ²					
14.) Hydraulic Radius, R = A/Pw Compute R ft 0.00 0.00 15.) Channel Slope, S ft/ft 1 1 16.) Manning's Roughness Coefficient, n 1 1 1 17.) V = (1.486/n) R^{0.667} S^{0.5} Compute V ft/s 0.00 0.00 18.) Flow Length, L ft 1 1 1 19.) T _t = L/3600 V Compute T _t hr 0.00 + 0.00 = 0.000 Kirpich Equation Segment ID 1	13.) Wetted Perimeter, P _w			ft					
15.) Channel Slope, S ft/ft interpret in the state of the st	14.) Hydraulic Radius, R = A/P _w	Compute R		ft	0.00	0.00	0.00		
16.) Manning's Roughness Coefficient, n Image: compute V ft 0.00 0.00 17.) V = (1.486/n) R^{0.667} S^{0.5} Compute V ft 0.00 0.00 0.00 18.) Flow Length, L ft 0.00 + 0.00 + 0.00 = 0.000 19.) T _t = L/3600 V Compute T _t hr 0.00 + 0.00 + 0.00 = 0.000 Kirpich Equation Segment ID 225.49	15.) Channel Slope, S			ft/ft					
17.) V = (1.486/n) R^{0.667} S^{0.5}	16.) Manning's Roughness Coefficient, n								
17.7 V = (1.400 h) h = 3 17.7 V = (1.400 h) h = 3 17.7 V = (1.400 h) h = 3 18.) Flow Length, L ft 1 1 19.) T _t = L/3600 V Compute T _t hr 0.00 + 0.00 Kirpich Equation Segment ID 1 1 1 1 1 1 20.) Flow Length, L ft 1<	$17) V = (1.486 / n) R^{0.667} S^{0.5}$	Compute V		ft/s	0.00	0.00	0.00		
18.) How tength, L It	18) Elow Length			f+	0.00	0.00	0.00		
If t = L/3000 v Segment ID If t = 0.00 + 0.00 + 0.00 + 0.00 - 0.000 Kirpich Equation Segment ID If t = 225.49 20.) Flow Length, L ft = 0.0078 x L^{0.77} x S^{-0.385} / 60 ft / ft = 0.0177 22.) T _t = (0.0078 x L^{0.77} x S^{-0.385})/60 Compute T _t hr 0.04 + 0.00 + 0.00 Sum of the Watershed/Subarea Travel Time (T _t or T _c) hr 0.04 + 0.00 + 0.00 23.) Watershed or Subarea T _t or T _c (add in steps 6,11,19 and 22) hr 0.189 24.) Sum of Watershed in Step 23, T _c Compute T _L min 6.804	19.) T = 1/3600.V	Compute T ₊		n br	0.00	0.00	0.00	_	0.000
Kirpich EquationSegment ID20.) Flow Length, L20.) Flow Length, Lft21.) Surface Slope, Sft/ft22.) $T_t = (0.0078 \times L^{A^{0.77}} \times S^{A^{-0.385}})/60$ Compute T_t hr0.04Sum of the Watershed/Subarea Travel Time (T_t or T_c)23.) Watershed or Subarea T_t or T_c (add in steps 6,11,19 and 22)hr0.18924.) Sum of Watershed in Step 23, T_c Compute T_L Compute T_L	13.) T _t = L/3000 V		·	111	0.00 +	0.00 +	0.00		J.000
Segment ID 20.) Flow Length, L 21.) Surface Slope, S 22.) $T_t = (0.0078 \times L^{A^{0.77}} \times S^{A^{-0.385}})/60$ Sum of the Watershed/Subarea Travel Time (T_t or T_c) 23.) Watershed or Subarea T_t or T_c (add in steps 6,11,19 and 22) 24.) Sum of Watershed in Step 23, T_c 25.) Lag Time, $T_L = 0.60 * T_c$ Compute T_L Compute T_L	Kirnich Equation								
Segment ID 20.) Flow Length, L ft 225.49 21.) Surface Slope, S ft/ft 0.0177 22.) $T_t = (0.0078 \times L^{A^{0.77}} \times S^{A^{-0.385}})/60$ Compute T_t hr 0.04 + 0.00 + 0.00 = 0.040 Sum of the Watershed/Subarea Travel Time (T_t or T_c) 23.) Watershed or Subarea T_t or T_c (add in steps 6,11,19 and 22) hr 0.189 24.) Sum of Watershed in Step 23, T_c min 11.340 25) Lag Time, $T_L = 0.60 * T_c$ Compute T_L min 6.804									
20.) Flow Length, L ft 225.49 21.) Surface Slope, S ft/ft 0.0177 22.) $T_t = (0.0078 \times L^{A^{0.77}} \times S^{A^{-0.385}})/60$ Compute T_t hr 0.04 + 0.00 + 0.00 = 0.040 Sum of the Watershed/Subarea Travel Time (T_t or T_c) hr 0.04 + 0.00 + 0.00 = 0.040 23.) Watershed or Subarea T_t or T_c (add in steps 6,11,19 and 22) hr 0.189 24.) Sum of Watershed in Step 23, T_c min 11.340 25) Lag Time, $T_L = 0.60 * T_c$ Compute T_L min 6.804			Cogmo	~+ ID					
20.) Flow Length, L ft 225.49 21.) Surface Slope, S ft/ft 0.0177 22.) $T_t = (0.0078 \times L^{0.77} \times S^{10.385})/60$ Compute T_t hr 0.04 + 0.00 = 0.040 Sum of the Watershed/Subarea Travel Time (T_t or T_c) Sum of the Watershed or Subarea T_t or T_c (add in steps 6,11,19 and 22) hr 0.189 24.) Sum of Watershed in Step 23, T_c min 11.340 25) Lag Time, $T_L = 0.60 * T_c$ Compute T_L min 6.804			Segme		225.40				
21.) Surface Slope, S ft/ft 0.0177 22.) $T_t = (0.0078 \times L^{0.77} \times S^{10.385})/60$ Compute T_t hr 0.04 + 0.00 + 0.00 = 0.040 Sum of the Watershed/Subarea Travel Time (T_t or T_c) sum of the Watershed or Subarea T_t or T_c (add in steps 6,11,19 and 22) hr 0.189 24.) Sum of Watershed in Step 23, T_c min 11.340 25) Lag Time, $T_L = 0.60 * T_c$ Compute T_L min 6.804	20.) Flow Length, L			π	225.49				
22.) $T_t = (0.0078 \times L^{A0.77} \times S^{A0.303})/60$ Sum of the Watershed/Subarea Travel Time (T_t or T_c) 23.) Watershed or Subarea T_t or T_c (add in steps 6,11,19 and 22) 24.) Sum of Watershed in Step 23, T_c 25) Lag Time, $T_L = 0.60 * T_c$ Compute T_L Compute T_L Mr 0.04 + 0.00 + 0.189 min 11.340 min 6.804	21.) Surface Slope, S	Compute T		ft/ft	0.0177			_	
Sum of the Watershed/Subarea Travel Time (T _t or T _c) 23.) Watershed or Subarea T _t or T _c (add in steps 6,11,19 and 22) hr 0.189 24.) Sum of Watershed in Step 23, T _c min 11.340 25) Lag Time, T _L = 0.60 * T _c Compute T _L min 6.804	22.) $T_t = (0.0078 \times L^{0.77} \times S^{-0.363})/60$	compute I _t		hr	0.04 +	0.00 +	0.00	=	0.040
23.) Watershed or Subarea T _t or T _c (add in steps 6,11,19 and 22) hr 0.189 24.) Sum of Watershed in Step 23, T _c min 11.340 25) Lag Time, T _L = 0.60 * T _c Compute T _L min 6.804	Sum of the Watershed/Subarea Travel Tim	ne (T _t or T _c)							
23.) Watershed or Subarea T_t or T_c (add in steps 6,11,19 and 22)hr0.18924.) Sum of Watershed in Step 23, T_c min11.34025) Lag Time, $T_L = 0.60 * T_c$ Compute T_L min								_	
24.) Sum of Watershed in Step 23, T_c min11.34025) Lag Time, $T_L = 0.60 * T_c$ Compute T_L min6.804	23.) Watershed or Subarea T_t or T_c (add in step	ps 6,11,19 and	22)					hr	0.189
25) Lag Time, $T_L = 0.60 * T_c$ Compute T_L min 6.804	24.) Sum of Watershed in Step 23, T _c					·	m	in	11.340
	25) Lag Time, T _L = 0.60 * T _c	Compute T _L					 m	in	6.804

Project Name	Ву			Date			
Bergin Lane	Ryan Vallejos				3/21/2022		
Watershed ID	Pre-Developr	nent	Post-De	evelopment	Note: Space for as r	many as three segme	ents per flow type can
	X				be	used for each works	heet.
Sheet Flow							
		Segme	nt ID				
1.) Surface Description (Table 3-1)							
2.) Manning's Roughness Coefficient, n				0.011			
3.) Flow Length, L (total L < 300 ft)			ft	174.7			
4.) Two-Year 24-Hour Rainfall, P ₂			in	1.1			
5.) Land Slope, S			ft/ft	0.064			
6.) T _t = 0.007(nL)^ $0.80/P_2$ ^ $0.5 * S^{0.4}$	Compute T _t		hr	0.03 +	0.00 +	0.00 =	0.034
Shallow Concentrated Flow							
		Segme	nt ID				
7.) Surface Description (Figure 15-4 or Table 1	5-3)						
8.) Flow Length, L			ft				
9.) Watercourse Slope, S			ft/ft				
10.) Average Velocity. V (Figure 15-4 or Table	15-3)		ft/s				
11.) T ₊ = L/3600 V	, Compute T _t		hr	0.00 +	0.00 +	0.00 =	0.000
				0.00	0.00	0.00	0.000
Channel Flow (Interative Method Within T	he Stream Hy	/draulic	Metho	d)			
		_		·			
		Segme	nt ID				
12.) Cross Sectional Flow Area, A			ft ²				
13.) Wetted Perimeter, P _w			ft				
14.) Hydraulic Radius, R = A/P _w	Compute R		ft	0.00	0.00	0.00	
15.) Channel Slope, S			ft/ft				
16.) Manning's Roughness Coefficient, n							
17) V = (1.486/n) $B^{0.667} S^{0.5}$	Compute V		ft/s	0.00	0.00	0.00	
18) Flow Length L			ft			0.00	
19) T. = 1 /3600 V	Compute T _t		hr	0.00 +	0.00 +	0.00	0.000
				0.00 +	0.00 +	0.00 -	0.000
Kirpich Equation							
		Segme	nt ID				
20) Flow Length L		U	ft	179			
21) Surface Slope S			f+ /f+	0.0108			
21.) Surface Stope, S 22.) $T = (0.0070 \times 10^{0.77} \times 50^{-0.385})/(50)$	Compute T.		11/11 h.u	0.0196	0.00	0.00	0.032
22.) $T_t = (0.0078 \times L^2 \times S^2)/60$			nr	0.03 +	0.00 +	0.00 =	0.052
Sum of the Watershed/Subarea Travel Tim	ne (T _t or T _c)						
22) Wetershed on Subaras T. and J. addition	no 6 11 10 1	221					0.000
23.) watershed or Subarea I_t or I_c (add in ste	hs o,11,19 and	22)				nh	0.066
24.) Sum of Watershed in Step 23, T_c						_ mi	n <u>3.946</u>
25) Lag Hime, $I_{L} = 0.60 \text{ m} I_{c}$	compute I _L					mi	n 2.368

Project Name	Ву		Date				
Bergin Lane	Ryan Vallejos				3/21/2022	-	
Watershed ID	Pre-Developr	ment	Post-De	evelopment	Note: Space for as	many as three segm	nents per flow type can
Basin 3	X				be	e used for each work	sheet.
Sheet Flow							
		Segmei	nt ID				
1.) Surface Description (Table 3-1)							
2.) Manning's Roughness Coefficient, n				0.011			
3.) Flow Length, L (total L < 300 ft)			ft	296.1			
4.) Two-Year 24-Hour Rainfall, P ₂			in	1.1			
5.) Land Slope, S			ft/ft	0.064			
6.) T ₄ = 0.007(nL)^ $0.80/P_2$ ^ $0.5 * S^{0.4}$	Compute T _t		, hr	0.05 +	0.00 +	0.00	= 0.052
				0.00	0.00	0.00	0.001
Shallow Concentrated Flow							
		-	. –				
		Segme	nt ID				
7.) Surface Description (Figure 15-4 or Table 1	5-3)						
8.) Flow Length, L			ft				
9.) Watercourse Slope, S			ft/ft				
10.) Average Velocity, V (Figure 15-4 or Table	15-3)		ft/s				
11.) T _t = L/3600 V	Compute T _t		, hr	0.00 +	0.00 +	0.00	= 0.000
Channel Flow (Interative Method Within T	he Stream Hy	ydraulic	Metho	d)			
		Segme	nt ID				
12.) Cross Sectional Flow Area, A			ft ²				
13.) Wetted Perimeter, P _w			ft				
14.) Hydraulic Radius, R = A/P _w	Compute R		ft	0.00	0.00	0.00	
15.) Channel Slope, S			ft/ft				
16.) Manning's Roughness Coefficient, n							
$(17) V = (1.486 / n) RA^{0.667} SA^{0.5}$	Compute V		ft/s	0.00	0.00	0.00	
$17.) V = (1.460/11) K^{12} S^{12}$		··	ft 10/3	0.00	0.00	0.00	
10.7 - 1/2600.7	Compute T.		1L h.e	0.00	0.00	0.00	0.000
19.) I _t - L/3000 V			nr	0.00 +	0.00 +	0.00	= 0.000
Kirnich Equation							
		C					
		Segme	nt ID				
20.) Flow Length, L			ft	212.71			
21.) Surface Slope, S			ft/ft	0.0172			
22.) $T_t = (0.0078 \times L^{0.77} \times S^{-0.385})/60$	Compute I _t	·	hr	0.04 +	0.00 +	0.00	= 0.039
Sum of the Watershed/Subarea Travel Tim	ne (T _t or T _c)						
23.) Watershed or Subarea T. or T. (add in ste	ps 6,11.19 and	22)				ŀ	0.090
24) Sum of Watershed in Step 23 T	, , ,	,					in 5.414
25) Lag Time. $T_1 = 0.60 * T_2$	Compute T					••	in 2 2/19
,,, -, -, -, -, -, -, -, -, -, -						m	III 3.240

Project Name	Ву		Date				
Bergin Lane	Ryan Vallejos				3/21/2022	2	
Watershed ID	Pre-Developr	ment	Post-De	evelopment	Note: Space for as	many as three segn	nents per flow type car
Basin 4	X				be	e used for each work	sheet.
Sheet Flow							
		Segme	nt ID				
1.) Surface Description (Table 3-1)							
2.) Manning's Roughness Coefficient, n				0.011			
3.) Flow Length, L (total L < 300 ft)			ft	300			
4.) Two-Year 24-Hour Rainfall, P ₂			in	1.1			
5.) Land Slope, S			ft/ft	0.053			
6.) T ₄ = 0.007(nL)^ $0.80/P_2$ ^ $0.5 * S^{0.4}$	Compute T _t		, hr	0.06 +	0.00 +	0.00	= 0.056
				0.00	0.00	0.00	0.000
Shallow Concentrated Flow							
		_					
		Segme	ent ID				
7.) Surface Description (Figure 15-4 or Table 1	5-3)	·					
8.) Flow Length, L			ft				
9.) Watercourse Slope, S			ft/ft				
10.) Average Velocity, V (Figure 15-4 or Table	15-3)		ft/s				
11.) T _t = L/3600 V	Compute T _t		hr	0.00 +	0.00 +	0.00	= 0.000
Channel Flow (Interative Method Within T	he Stream Hy	ydraulic	Metho	d)			
				·	·		
		Segme	ent ID				
12.) Cross Sectional Flow Area, A			ft ²				
13.) Wetted Perimeter, P _w			ft				
14.) Hydraulic Radius, R = A/P _w	Compute R		ft	0.00	0.00	0.00	
15.) Channel Slope, S	-		ft/ft				
16.) Manning's Roughness Coefficient, n			-1 -				
$17) V = (1.486 / n) PA^{0.667} SA^{0.5}$	Compute V		ft/s	0.00	0.00	0.00	
$17.) V = (1.460/11) K^{12} S^{12}$		·	11/3 £+	0.00	0.00	0.00	
	Compute T.		11	0.00	0.00	0.00	0.000
19.) $I_t = L/3000 V$			nr	0.00 +	0.00 +	0.00	= 0.000
Kirnich Faustion							
Kirpich Equation							
		6					
		Segme	ent ID				
20.) Flow Length, L			ft				
21.) Surface Slope, S			ft/ft				
22.) $T_t = (0.0078 \times L^{0.77} \times S^{-0.385})/60$	Compute I _t	·	hr	0.00 +	0.00 +	0.00	= 0.000
Sum of the Watershed/Subarea Travel Tim	ne (T. or T.)						
23.) Watershed or Subarea T. or T. (add in ster	os 6,11,19 and	22)				ł	or 0.056
24) Sum of Watershed in Step 22. T		,				ا س	in 2.261
25) Lag Time T. = $0.60 \times T$	Compute T					 -	3.303
$20, 200 \text{ mmc}, 12 = 0.00 \text{ m}_{c}$						m	in 2.018

PRE-DEV BASIN 4 CONT...

KERBY EQUATION

SECTION 1	
Length (ft)	121.158
Slope (ft/ft)	0.0495
Retardance Coefficient (N)	0.01
Unit Conversion (K = 0.828)	0.828
Overland Flow Tc (Tov) Min	1.84
Total Kerby Eq Tc (min)	1.84

TOTAL BASIN 4 TC (min)

5.20

Project Name	Ву		Date				
Bergin Lane	Ryan Vallejos				3/21/2022	-	
Watershed ID	Pre-Developr	ment	Post-De	evelopment	Note: Space for as	many as three segm	ents per flow type can
Basin 5	X				be	e used for each work	sheet.
Sheet Flow							
		Segme	nt ID				
1.) Surface Description (Table 3-1)							
2.) Manning's Roughness Coefficient, n				0.035			
3.) Flow Length, L (total L < 300 ft)			ft	300			
4.) Two-Year 24-Hour Rainfall, P ₂			in	1.1			
5.) Land Slope, S			ft/ft	0.05			
6.) T ₄ = 0.007(nL)^ $0.80/P_2$ ^ $0.5 * S^{0.4}$	Compute T _t		, hr	0.15 +	0.00 +	0.00	0.145
				0.15	0.00	0.00	01110
Shallow Concentrated Flow							
		_					
		Segme	ent ID				
7.) Surface Description (Figure 15-4 or Table 1	5-3)						
8.) Flow Length, L			ft				
9.) Watercourse Slope, S			ft/ft				
10.) Average Velocity, V (Figure 15-4 or Table	15-3)		ft/s				
11.) T _t = L/3600 V	Compute T _t		hr	0.00 +	0.00 +	0.00	0.000
Channel Flow (Interative Method Within T	he Stream Hy	ydraulic	Metho	d)			
		Segme	ent ID				
12.) Cross Sectional Flow Area. A		-	ft ²				
13.) Wetted Perimeter, P.,			ft				
14) Hydraulic Badius $B = A/P$	Compute R		ft	0.00	0.00	0.00	
15) Channel Slone, S	compute n	·	f+ /f+	0.00	0.00	0.00	
16.) Manning's Doughness Coefficient, n			11/11				
10.) Manning S Roughness Coefficient, n			<i>c. (</i>				
17.) V = (1.486/n) $R^{0.007} S^{0.5}$	Compute V		ft/s	0.00	0.00	0.00	
18.) Flow Length, L	Commenter		ft				
19.) T _t = L/3600 V	Compute I _t		hr	0.00 +	0.00 +	0.00	= 0.000
Kirpich Equation							
		Segme	ent ID				
20.) Flow Length, L			ft				
21.) Surface Slope, S			ft/ft				
22.) $T_t = (0.0078 \times L^{0.77} \times S^{-0.385})/60$	Compute T _t		hr	0.00 +	0.00 +	0.00	= 0.000
Sum of the Watershed/Subarea Travel Tim	ne ($T_t \text{ or } T_c$)						
22) Watershed or Subares T and (adding the	ac C 11 10 am -	111				1.	0.145
25.) watershed of Subarea I_t of I_c (add in step	72 0,11,19 and	22)				n	0.145
24.) Sum of Watershed in Step 23, T_c	Computer					m	in 8.708
25) Lag Hme, $I_{L} = 0.60 \text{ T}_{c}$	compute I _L					m	in 5.225

PRE-DEV BASIN 5 CONT...

KERBY EQUATION

SECTION 1	
Length (ft)	1104.71
Slope (ft/ft)	0.0444
Retardance Coefficient (N)	0.2
Unit Conversion (K = 0.828)	0.828
Overland Flow Tc (Tov) Min	21.41
Total Kerby Eq Tc (min)	21.41

TOTAL BASIN 5 TC (min)

30.12

Project Name	Ву			Date		
Bergin Lane	Ryan Vallejos				3/21/2022	
Watershed ID	Pre-Developm	nent	Post-D	evelopment	Note: Space for as many as the	hree segments per flow type can
	X				be used for e	each worksheet.
Sheet Flow						
 Surface Description (Table 3-1) Manning's Roughness Coefficient, n Elow Length L (total L < 300 ft) 		Segme	nt ID	0.011		
$\frac{3.110}{100} \text{ Length, } L(101a) L < 300 \text{ H})$			11 :	172.9		
4.) Two-Year 24-Hour Rainfall, P_2			in	1.1		
5.) Land Slope, S	Contractor		ft/ft	0.081		
6.) $T_t = 0.007(nL)^{0.80}/P_2^{0.5} * S^{0.4}$	Compute I _t		hr	0.03 +	0.00 + 0.0	00 = 0.031
Shallow Concentrated Flow						
		Segme	ent ID			
7) Surface Description (Figure 15-4 or Table 1	5-3)	008				
2) Elow Longth 1	5 57		£+.			
9.) Watercourse Slope, S			ft/ft			
10.) Average Velocity, V (Figure 15-4 or Table :	15-3)		ft/s			
11.) T _t = L/3600 V	Compute I _t		hr	0.00 +	0.00 + 0.0	000.0 = 0.000
Channel Flow (Interative Method Within T	he Stream Hy	/draulic	Metho	d)		
		Segme	ent ID			
12) Cross Sectional Flow Area, A		Segure	يدر 10 در2			
12.) Closs Sectional How Area, A			IL L			
14) Wetted Perificience, Pw			n G			
14.) Hydraulic Radius, R = A/P _w	Compute R		ft	0.00	0.00 0.0	00
15.) Channel Slope, S			ft/ft			
16.) Manning's Roughness Coefficient, n						
17.) V = (1.486/n) R^ ^{0.667} S^ ^{0.5}	Compute V		ft/s	0.00	0.00 0.0	00
18.) Flow Length, L			ft			
19.) T ₊ = L/3600 V	Compute T _t		hr	0.00 +	0.00 + 0.0	0.00 = 0.000
Kirnich Equation						
		Segme	ent ID			
20.) Flow Length, L			ft			
21.) Surface Slope, S			ft/ft			
22.) $T_t = (0.0078 \times L^{0.77} \times S^{-0.385})/60$	Compute T _t		hr	0.00 +	0.00 + 0.0	00.00 = 0.000
Sum of the Watershed/Subarea Travel Tim	ne (T_t or T_c)					
23) Watershed or Subarea T or T (add in ster	ns 6 11 19 and	221				hr 0.021
24) Sum of Watershed in Step 22. T	55 0,11,15 and	,				min 1.020
24.) Sum of watershed in Step 23, I_c 25) Lag Time T. = 0.60 * T	Compute					min 1.830
$231 \text{ Lag mine, } 1_{\text{L}} = 0.00 \text{ I}_{\text{C}}$						min 1.098

PRE-DEV BASIN 6 CONT...

KERBY EQUATION

SECTION 1	
Length (ft)	368.997
Slope (ft/ft)	0.0379
Retardance Coefficient (N)	0.2
Unit Conversion (K = 0.828)	0.828
Overland Flow Tc (Tov) Min	13.32
Total Kerby Eq Tc (min)	13.32

TOTAL BASIN 6 TC (min)

15.15

Project Name	Ву				Date			
Bergin Lane	Ryan Vallejos				3/21/2022	<u>2</u>		
Watershed ID	Pre-Developr	ment	Post-D	evelopment	Note: Space for as	many as three segr	nents per flow ty	/pe can
Basin /	X				be	e used for each wor	:sheet.	
Sheet Flow								
		Segme	nt ID					
1.) Surface Description (Table 3-1)								
2.) Manning's Roughness Coefficient, n				0.011				
3.) Flow Length, L (total L < 300 ft)			ft	300				
4.) Two-Year 24-Hour Rainfall, P ₂			in	1.1				
5.) Land Slope, S			ft/ft	0.033				
6.) T ₄ = 0.007(nL)^ $0.80/P_2$ ^ $0.5 * S^{0.4}$	Compute T _t		, hr	0.07 +	0.00 +	0.00	= 0.06	58
				0.07	0.00	0.00	0.00	
Shallow Concentrated Flow								
		Segme	nt ID					
7.) Surface Description (Figure 15-4 or Table 1	5-3)							
8.) Flow Length, L			ft					
9.) Watercourse Slope, S			ft/ft					
10.) Average Velocity, V (Figure 15-4 or Table	15-3)		, ft/s					
11) T = 1/3600 V	Compute T _t		hr	0.00 +	0.00 +	0.00	- 0.00	າດ
				0.00	0.00	0.00	- 0.00	
Channel Flow (Interative Method Within T	bo Stroom U	vdraulia	Matha	۲)				
		yuraunu	metho	J)				
		Segme	ent ID					
12.) Cross Sectional Flow Area, A			ft²					
13.) Wetted Perimeter, P _w			ft					
14.) Hydraulic Radius, R = A/P _w	Compute R		ft	0.00	0.00	0.00		
15.) Channel Slope, S			ft/ft					
16.) Manning's Roughness Coefficient, n								
17) V = (1.486/n) $B^{0.667} S^{0.5}$	Compute V		ft/s	0.00	0.00	0.00		
18) Flow Length			ft	0.00	0.00	0.00		
19) T - I /3600 V	Compute T _t		hr	0.00 +	0.00	0.00	- 0.00	\mathbf{D}
	· ·			0.00 +	0.00	0.00	- 0.00	10
Vissiah Exception							_	
Kirpich Equation								
		_						
		Segme	nt ID					
20.) Flow Length, L			ft	479.01				
21.) Surface Slope, S			ft/ft	0.0285				
22.) T _t = (0.0078 x L^ ^{0.77} x S^ ^{-0.385})/60	Compute T _t		hr	0.06 +	0.00 +	0.00	= 0.	.059
Sum of the Watershed/Subarea Travel Tin	ne (T _t or T _c)							
23.) Watershed or Subarea T_t or T_c (add in ste	ps 6,11,19 and	22)				ł	ır 0.	.127
24.) Sum of Watershed in Step 23, T _c						m	in 7.	.614
25) Lag Time, T _L = 0.60 * T _c	Compute T_L					 m	in 4.	.568

Project Name	Ву				Date			
Bergin Lane	Ryan Vallejos				3/21/2022	2		
Watershed ID	Pre-Developr	ment	Post-De	evelopment	Note: Space for as	s many as three seg	ments per flow t	type can
Basin 8	X				b	e used for each wor	ksheet.	_
Sheet Flow								
		Segme	nt ID					
1.) Surface Description (Table 3-1)								
2.) Manning's Roughness Coefficient, n				0.011				
3.) Flow Length, L (total L < 300 ft)			ft	70.81				
4.) Two-Year 24-Hour Rainfall, P ₂			in	1.1				
5.) Land Slope, S			ft/ft	0.028				
6.) T _t = 0.007(nL)^ $0.80/P_2$ ^ $0.5 * S^{0.4}$	Compute T _t		hr	0.02 +	0.00 +	0.00	= 0.0	23
				0.01	0.00	0.00		
Shallow Concentrated Flow								
		<u> </u>						
		Segme	πτιυ					
7.) Surface Description (Figure 15-4 or Table 1	5-3)							
8.) Flow Length, L			ft					
9.) Watercourse Slope, S			ft/ft					
10.) Average Velocity, V (Figure 15-4 or Table	15-3)		ft/s					
11.) T _t = L/3600 V	Compute T _t		hr	0.00 +	0.00 +	0.00	= 0.0	00
Channel Flow (Interative Method Within T	he Stream Hy	ydraulic	Metho	d)				
		Segme	nt ID					
12) Cross Sectional Flow Area A		Segure	£+2					
12.) Closs Sectional How Alea, A			۱۱ 4					
14) Hydraulic Padiuc, $P = A/P$	Computo P		۱۱ د	0.00	0.00	0.00		
14.) Hyuraulic Radius, $R = A/P_w$	Compute R	·	Π (. ((.	0.00	0.00	0.00		
15.) Channel Slope, S			ft/ft					
16.) Manning's Roughness Coefficient, n								
17.) V = (1.486/n) R^0.007 S^0.5	Compute V		ft/s	0.00	0.00	0.00		
18.) Flow Length, L			ft					
19.) T _t = L/3600 V	Compute I _t		hr	0.00 +	0.00 +	0.00	= 0.0	00
Kirpich Equation								
		Commo						
		Segme	nt ID					
20.) Flow Length, L			ft	336.15				
21.) Surface Slope, S			ft/ft	0.0145				
22.) $T_t = (0.0078 \times L^{0.77} \times S^{-0.385})/60$	Compute I _t	·	hr	0.06 +	0.00 +	0.00	= 0).059
Sum of the Watershed/Subarea Travel Tim	ne (T _t or T _c)							
		22)					_	
23.) Watershed or Subarea T_t or T_c (add in step	ps 6,11,19 and	22)					nr 0).081
24.) Sum of Watershed in Step 23, T _c						rr	in 4	.873
25) Lag Time, $I_L = 0.60 * I_c$	compute T _L					r	nin 2	.924

Project Name	Ву				Date			
Bergin Lane	Ryan Vallejos				3/21/2022	2		
Watershed ID	Pre-Developr	ment	Post-De	evelopment	Note: Space for as	s many as three segr	nents per flow ty	pe can
Basin 9	X				b	e used for each wor	ksheet.	
Sheet Flow								
		Segme	nt ID					
1.) Surface Description (Table 3-1)								
2.) Manning's Roughness Coefficient, n				0.011				
3.) Flow Length, L (total L < 300 ft)			ft	285.7				
4.) Two-Year 24-Hour Rainfall, P ₂			in	1.1				
5.) Land Slope, S			ft/ft	0.014				
6.) T _t = 0.007(nL)^ $0.80/P_2$ ^ $0.5 * S^{0.4}$	Compute T _t		hr	0.09 +	0.00 +	0.00	= 0.09	92
				0.00	0.00	0.00		
Shallow Concentrated Flow								
		<u> </u>						
		Segme	nt ID					
7.) Surface Description (Figure 15-4 or Table 1	5-3)							
8.) Flow Length, L			ft					
9.) Watercourse Slope, S			ft/ft					
10.) Average Velocity, V (Figure 15-4 or Table	15-3)		ft/s					
11.) T _t = L/3600 V	Compute T _t		hr	0.00 +	0.00 +	0.00	= 0.00)0
Channel Flow (Interative Method Within T	he Stream Hy	ydraulic	Metho	d)				
		Segme	nt ID					
12) Cross Sectional Flow Area A		Segure	£+2					
12.) Closs Sectional How Alea, A			۱۱ 4					
14) Hydraulic Padiuc, $P = A/P$	Computo P		۱۱ د	0.00	0.00	0.00		
14.) Hyuraulic Radius, $R = A/P_w$	Compute R	·	Π (. ((.	0.00	0.00	0.00		
15.) Channel Slope, S			ft/ft					
16.) Manning's Roughness Coefficient, n								
17.) V = (1.486/n) R^0.007 S^0.5	Compute V		ft/s	0.00	0.00	0.00		
18.) Flow Length, L			ft					
19.) T _t = L/3600 V	Compute I _t		hr	0.00 +	0.00 +	0.00	= 0.00)0
								_
Kirpich Equation								
		Commo						
		Segme	nt ID					
20.) Flow Length, L			ft	331.42				
21.) Surface Slope, S	Computer		ft/ft	0.0169				
22.) $T_t = (0.0078 \times L^{0.77} \times S^{-0.385})/60$	Compute I _t	·	hr	0.05 +	0.00 +	0.00	= 0.	.055
Sum of the Watershed/Subarea Travel Tim	ne (T _t or T _c)							
	· ·	22)						
23.) Watershed or Subarea T_t or T_c (add in step	ps 6,11,19 and	22)					זר 0.	147
24.) Sum of Watershed in Step 23, T _c						m	in 8.	794
25) Lag Time, $I_L = 0.60 * I_c$	compute I					m	in 5.	.276

Project Name	Ву				Date			
Bergin Lane	Ryan Vallejos				3/21/202	2		
Watershed ID	Pre-Developr	nent	Post-De	evelopment	Note: Space for a	s many as three se	gments per f	low type can
Basin 10	X				t	be used for each wo	orksheet.	
Sheet Flow								
		Segme	nt ID					
1.) Surface Description (Table 3-1)								
2.) Manning's Roughness Coefficient, n				0.011				
3.) Flow Length, L (total L < 300 ft)			ft	158				
4.) Two-Year 24-Hour Rainfall, P_2			in	1.1				
5.) Land Slope, S			ft/ft	0.019				
6) T ₁ = 0.007(nL) $^{0.80}$ /P ₂ $^{0.5}$ * S $^{0.4}$	Compute T _t		hr	0.05 +	0.00	+ 0.00	= (050
				0.05	0.00	0.00		
Shallow Concentrated Flow								
		Segme	ent ID					
7.) Surface Description (Figure 15-4 or Table 1	5-3)							
8.) Flow Length, L			ft					
9.) Watercourse Slope, S			ft/ft					
10) Average Velocity, V (Figure 15-4 or Table	15-3)		ft/s					
11) T = 1/3600 V	Compute T _t		br	0.00 +	0.00	+ 0.00	- (
		·	111	0.00 +	0.00	- 0.00		1.000
Channel Flow (Interative Method Within T	he Stream Hy	/draulio	: Metho	d)				
		Sogm	nt ID				1	
12) Crease Spectional Flow Area A		Segine	c.2					
12.) Cross Sectional Flow Area, A			ft-					
13.) Wetted Perimeter, P _w			ft					
14.) Hydraulic Radius, $R = A/P_w$	Compute R		ft	0.00	0.00	0.00		
15.) Channel Slope, S			ft/ft					
16.) Manning's Roughness Coefficient, n								
17.) V = (1.486/n) R^ ^{0.667} S^ ^{0.5}	Compute V		ft/s	0.00	0.00	0.00		
18.) Flow Length, L			ft					
19.) T _t = L/3600 V	Compute T _t		hr	0.00 +	0.00	+ 0.00	= ().000
Kirpich Equation								
		~					I	
		Segme	ent ID					
20.) Flow Length, L			ft	512.23				
21.) Surface Slope, S	C		ft/ft	0.0181				
22.) $T_t = (0.0078 \times L^{0.77} \times S^{-0.385})/60$	Compute I _t		hr	0.07 +	0.00 +	0.00	=	0.074
Sum of the Watershed/Subarea Travel Tim	ne ($T_t \text{ or } T_c$)							
							. —	
23.) Watershed or Subarea T_t or T_c (add in step	os 6,11,19 and	22)					hr	0.125
24.) Sum of Watershed in Step 23, T _c						r	nin	7.475
25) Lag Time, T _L = 0.60 * T _c	Compute T _L	_				r	nin	4.485

Project Name	Ву			Date			
Bergin Lane	Ryan Vallejos				3/21/2022		
Watershed ID	Pre-Developr	ment	Post-D	evelopment	Note: Space for as	many as three segm	ents per flow type can
	X				be	used for each works	heet.
Sheet Flow							
1) Surface Description (Table 2.1)		Segme	nt ID				
1.) Surface Description (Table 3-1)							
2.) Manning's Roughness Coefficient, n				0.011			
3.) Flow Length, L (total L < 300 ft)			ft	<mark>12.6</mark>			
4.) Two-Year 24-Hour Rainfall, P ₂			in	1.1			
5.) Land Slope, S			ft/ft	0.02			
6.) $T_t = 0.007(nL)^{0.80}/P_2^{0.5} * S^{0.4}$	Compute T _t		hr	0.01 +	0.00 +	0.00	0.007
				L			8
Shallow Concentrated Flow							
		-					
		Segme	ent ID				
7.) Surface Description (Figure 15-4 or Table 1	5-3)						
8.) Flow Length, L			ft	179.3			
9.) Watercourse Slope, S			ft/ft	0.0126			
10.) Average Velocity, V (Figure 15-4 or Table	15-3)		ft/s	2.282			
11.) T _t = L/3600 V	Compute T _t		, hr	0.02 +	0.00 +	0.00 =	0.022
Channel Flow (Interative Method Within T	he Stream Hy	ydraulic	Metho	d)			
		Commo					
		Segme					
12.) Cross Sectional Flow Area, A			ft ²				
13.) Wetted Perimeter, P _w			ft				
14.) Hydraulic Radius, R = A/P _w	Compute R		ft	0.00	0.00	0.00	
15.) Channel Slope, S			ft/ft				
16.) Manning's Roughness Coefficient, n							
17.) V = (1.486/n) R^ ^{0.667} S^ ^{0.5}	Compute V		ft/s	0.00	0.00	0.00	
18.) Flow Length, L			ft				
19.) T _t = L/3600 V	Compute T _t		hr	0.00 +	0.00 +	0.00 =	0.000
Kirpich Equation							
		Segme	ent ID				
20.) Flow Length, L			ft				
21.) Surface Slope, S			ft/ft				
22.) $T_t = (0.0078 \times L^{0.77} \times S^{-0.385})/60$	Compute T _t		hr	0.00 +	0.00 +	0.00 =	0.000
Sum of the Watershed/Subarea Travel Tin	ne (T _t or T _c)						
23.) Watershed or Subarea T_t or T_c (add in step	ps 6,11,19 and	22)				h	r 0.028
24.) Sum of Watershed in Step 23, T _c						mi	n 1.704
25) Lag Time, $T_{L} = 0.60 * T_{c}$	Compute T _L	· -				mi	n 1.022

Project Name	Ву				Date			
Bergin Lane	Ryan Vallejos				3/21/2022	2		
Watershed ID	Pre-Developr	ment	Post-D	evelopment	Note: Space for as	s many as three se	gments pe	er flow type can
Road Sheet Flow (Basins R2 & R5)	X				b	e used for each w	orksheet.	_
Sheet Flow								
1) Sumface Description (Table 2.1)		Segmer	nt ID					
1.) Surface Description (Table 3-1)								
2.) Manning's Roughness Coefficient, n				0.011				
3.) Flow Length, L (total L < 300 ft)			ft	300				
4.) Two-Year 24-Hour Rainfall, P ₂			in	1.1				
5.) Land Slope, S			ft/ft	0.06				
6.) $T_t = 0.007(nL)^{0.80}/P_2^{0.5} * S^{0.4}$	Compute T _t		hr	0.05 +	0.00 +	0.00	=	0.053
Shallow Concentrated Flow								
							1	
		Segme	nt ID					
7.) Surface Description (Figure 15-4 or Table 1	5-3)							
8.) Flow Length, L			ft					
9.) Watercourse Slope, S			ft/ft					
10.) Average Velocity, V (Figure 15-4 or Table	15-3)		ft/s					
11.) T _t = L/3600 V	Compute T _t		hr	0.00 +	0.00 +	- 0.00	=	0.000
Channel Flow (Interative Method Within T	he Stream Hy	draulic	Metho	d)				
		Segme	nt ID					
12.) Cross Sectional Flow Area, A			ft ²					
13.) Wetted Perimeter, P _w			ft					
14.) Hydraulic Radius, R = A/P _w	Compute R		ft	0.00	0.00	0.00		
15.) Channel Slope, S			ft/ft	0.00		0.00		
16) Manning's Roughness Coefficient n								
$17.11 - (1.400 (m) DA^{0.667} CA^{0.5})$	Compute V		ft/c	0.00	0.00	0.00		
$17.) V = (1.486/f) R^{4} S^{4}$	compute v	•======	11/S	0.00	0.00	0.00		
	Compute T.		π					0.000
19.) $I_t = L/3600 V$	"		hr	0.00 +	0.00 +	0.00		0.000
Kirpich Equation								
		Segme	nt ID					
20.) Flow Length, L			ft					
21.) Surface Slope, S			ft/ft					
22.) T ₁ = $(0.0078 \times 1^{0.77} \times 5^{-0.385})/60$	Compute T _t		hr	0.00 +	0.00 +	0.00	=	0.000
				0.00	0.00	0.00		
Sum of the Watershed/Subarea Travel Tim	ne (T _t or T _c)							
		221					. 📼	0.075
23.) watersned or Subarea I_t or I_c (add in step	os 6,11,19 and	22)					nr	0.053
24.) Sum of Watershed in Step 23, T_c						r	nin	3.207
25) Lag Time, $I_{L} = 0.60 + I_{c}$	compute I _L					r	nin	1.924

Project Name	Ву				Date			
Bergin Lane	Ryan Vallejos				3/21/2022			
Watershed ID	Pre-Developr	nent	Post-D	evelopment	Note: Space for as	many as three se	gments pe	r flow type can
Road SCF (Basins R3-R7)	Х				b	e used for each wo	orksheet.	
Sheet Flow								
		Segme	nt ID					
1.) Surface Description (Table 3-1)								
Manning's Roughness Coefficient, n								
3.) Flow Length, L (total L < 300 ft)			ft					
4.) Two-Year 24-Hour Rainfall, P ₂			in					
5.) Land Slope, S			ft/ft					
$6 \ T = 0.007(n1) \Lambda^{0.80} / P \Lambda^{0.5} * S \Lambda^{0.4}$	Compute T ₊		br	0.00 +		0.00	_	0.000
$(112)^{-1} / (112)^{-1} / (12)^{-1} $	· · ·		111	0.00 +	0.00	0.00	_	0.000
Shallow Concentrated Flow								
							1	
		Segme	nt ID					
7.) Surface Description (Figure 15-4 or Table 1	5-3)							
8.) Flow Length, L			ft	120				
9.) Watercourse Slope, S			ft/ft	0.05				
10) Average Velocity, V (Figure 15-4 or Table	15_2)		ft/c	4.55				
$11 \ T = 1/2600 \ V$	Compute T.		11/5	4.55	0.00	0.00		0.007
11.) $I_t = L/3600 V$	"		nr	0.01 +	0.00 +	0.00	=	0.007
Channel Flow (Interative Method Within T	he Stream Hy	/draulic	Metho	d)				
				_	_	_		
		Segme	nt ID					
12.) Cross Sectional Flow Area, A			ft ²					
13.) Wetted Perimeter, P.,			ft					
14) Hydraulic Badius $B = A/P$	Compute R		ft	0.00	0.00	0.00		
$1 \neq 0$ (here a line $1 \neq 0$) $1 \neq 0$	compute n		۲۲ ۲۲	0.00	0.00	0.00		
15.) Channel Slope, S			π/π					
16.) Manning's Roughness Coefficient, n								
17.) V = (1.486/n) R^ ^{0.667} S^ ^{0.5}	Compute V		ft/s	0.00	0.00	0.00		
18.) Flow Length, L			ft					
19.) T _t = L/3600 V	Compute T _t		hr	0.00 +	0.00 +	0.00	=	0.000
Kirpich Equation								
		Sogmo	nt ID					
		Segme						
20.) Flow Length, L			ft					
21.) Surface Slope, S			ft/ft					
22.) $T_t = (0.0078 \times L^{0.77} \times S^{-0.385})/60$	Compute I _t		hr	0.00 +	0.00 +	0.00	=	0.000
Sum of the Watershed/Subarea Travel Tim	ne (T_t or T_c)							
23.) Watershed or Subarea T. or T. (add in ster	os 6,11 19 and	221					hr 🗖	0.007
24) Sum of Watershed in Ston 22 T)						0.007
25) Lag Time T. = $0.60 \times T$	Compute T					r		0.440
$251 \text{ Lag riffer, } 1_{\text{C}} = 0.00 \text{ I}_{\text{C}}$						r	nin	0.264

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

50 - Year

Summary Report	. 1
Hydrograph Reports	. 3
Hydrograph No. 1, SCS Runoff, Basin 1	. 3
Hydrograph No. 2, SCS Runoff, Basin 2	. 4
Hydrograph No. 3, SCS Runoff, Basin 3	. 5
Hydrograph No. 4, SCS Runoff, Basin 4	. 6
Hydrograph No. 5, SCS Runoff, Basin 5	. 7
Hydrograph No. 6, SCS Runoff, Basin 6	. 8
Hydrograph No. 7, SCS Runoff, Basin 7	. 9
Hydrograph No. 8, SCS Runoff, Basin 8	10
Hydrograph No. 9, SCS Runoff, Basin 9	11
Hydrograph No. 10, SCS Runoff, Basin 10	12
Hydrograph No. 11, SCS Runoff, R1	13
Hydrograph No. 12, SCS Runoff, R2	14
Hydrograph No. 13, SCS Runoff, R3	15
Hydrograph No. 14, SCS Runoff, R4	16
Hydrograph No. 15, SCS Runoff, R5	17
Hydrograph No. 16, SCS Runoff, R6	18
Hydrograph No. 17, SCS Runoff, R7	19
Hydrograph No. 18, SCS Runoff, R8	20
Hydrograph No. 19, SCS Runoff, R9	21
Hydrograph No. 20, SCS Runoff, R10	22
Hydrograph No. 21, SCS Runoff, R11	23
Hydrograph No. 22, SCS Runoff, R12	24
Hydrograph No. 23, SCS Runoff, R13	25
Hydrograph No. 24, SCS Runoff, R14	26
Hydrograph No. 25, SCS Runoff, R15	27
Hydrograph No. 26, SCS Runoff, R16	28
Hydrograph No. 27, SCS Runoff, R17	29
Hydrograph No. 28, SCS Runoff, R18	30
Hydrograph No. 29, SCS Runoff, R19	31
Hydrograph No. 30, SCS Runoff, R20	32
Hydrograph No. 31, SCS Runoff, R21	33
Hydrograph No. 32, SCS Runoff, R22	34
Hydrograph No. 33, SCS Runoff, R23	35
Hydrograph No. 34, SCS Runoff, R24	36
Hydrograph No. 35, SCS Runoff, R25	37

100 - Year

Summary Report	38
Hydrograph Reports	40
Hydrograph No. 1, SCS Runoff, Basin 1	40
Hydrograph No. 2, SCS Runoff, Basin 2	41
Hydrograph No. 3, SCS Runoff, Basin 3	42
Hydrograph No. 4, SCS Runoff, Basin 4	43
Hydrograph No. 5, SCS Runoff, Basin 5	44
Hydrograph No. 6, SCS Runoff, Basin 6	45
Hydrograph No. 7, SCS Runoff, Basin 7	46

Hydrograph No. 8, SCS Runoff, Basin 8	47
Hydrograph No. 9, SCS Runoff, Basin 9	48
Hydrograph No. 10, SCS Runoff, Basin 10	49
Hydrograph No. 11, SCS Runoff, R1	50
Hydrograph No. 12, SCS Runoff, R2	51
Hydrograph No. 13, SCS Runoff, R3	52
Hydrograph No. 14, SCS Runoff, R4	53
Hydrograph No. 15, SCS Runoff, R5	54
Hydrograph No. 16, SCS Runoff, R6	55
Hydrograph No. 17, SCS Runoff, R7	56
Hydrograph No. 18, SCS Runoff, R8	57
Hydrograph No. 19, SCS Runoff, R9	58
Hydrograph No. 20, SCS Runoff, R10	59
Hydrograph No. 21, SCS Runoff, R11	60
Hydrograph No. 22, SCS Runoff, R12	61
Hydrograph No. 23, SCS Runoff, R13	62
Hydrograph No. 24, SCS Runoff, R14	63
Hydrograph No. 25, SCS Runoff, R15	64
Hydrograph No. 26, SCS Runoff, R16	65
Hydrograph No. 27, SCS Runoff, R17	66
Hydrograph No. 28, SCS Runoff, R18	67
Hydrograph No. 29, SCS Runoff, R19	68
Hydrograph No. 30, SCS Runoff, R20	69
Hydrograph No. 31, SCS Runoff, R21	70
Hydrograph No. 32, SCS Runoff, R22	71
Hydrograph No. 33, SCS Runoff, R23	72
Hydrograph No. 34, SCS Runoff, R24	73
Hydrograph No. 35, SCS Runoff, R25	74

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.309	5	725	1,453				Basin 1
2	SCS Runoff	1.650	5	720	4,611				Basin 2
3	SCS Runoff	2.950	5	720	8,129				Basin 3
4	SCS Runoff	1.505	5	720	4,205				Basin 4
5	SCS Runoff	1.882	5	735	10,990				Basin 5
6	SCS Runoff	0.383	5	725	1,461				Basin 6
7	SCS Runoff	6.133	5	720	16,898				Basin 7
8	SCS Runoff	0.896	5	720	2,422				Basin 8
9	SCS Runoff	3.900	2	720	10,168				Basin 9
10	SCS Runoff	2.216	5	720	5,987				Basin 10
11	SCS Runoff	0.189	5	720	555				R1
12	SCS Runoff	0.192	5	720	562				R2
13	SCS Runoff	0.106	5	720	310				R3
14	SCS Runoff	0.138	5	720	404				R4
15	SCS Runoff	0.121	5	720	327				R5
16	SCS Runoff	0.121	5	720	327				R6
17	SCS Runoff	0.129	5	720	350				R7
18	SCS Runoff	0.121	5	720	327				R8
19	SCS Runoff	0.121	5	720	327				R9
20	SCS Runoff	0.121	5	720	327				R10
21	SCS Runoff	0.121	5	720	327				R11
22	SCS Runoff	0.121	5	720	327				R12
23	SCS Runoff	0.121	5	720	327				R13
24	SCS Runoff	0.091	5	720	247				R14
25	SCS Runoff	0.091	5	720	247				R15
26	SCS Runoff	0.091	5	720	247				R16
27	SCS Runoff	0.121	5	720	327				R17
28	SCS Runoff	0.121	5	720	327				R18
29	SCS Runoff	0.129	5	720	350				R19
30	SCS Runoff	0.129	5	720	350				R20
31	SCS Runoff	0.129	5	720	350				R21
32	SCS Runoff	0.129	5	720	350				R22
33	SCS Runoff	0.129	5	720	350				R23
34	SCS Runoff	0.167	5	720	490				R24
Нус	draflow(Pre-De	ev).gpw			Return P	eriod: 50 Y	ear	Tuesday, 0	5 / 17 / 2022

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
35	SCS Runoff	0.311	5	720	911				R25
Нус	lraflow(Pre-D	ev).gpw	<u> </u>	<u> </u>	Return P	eriod: 50 Y	/ear	Tuesday, 0	5 / 17 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 1

Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.309 cfs
Storm frequency	= 50 yrs	Time to peak	= 725 min
Time interval	= 5 min	Hyd. volume	= 1,453 cuft
Drainage area	= 2.162 ac	Curve number	= 72
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 11.80 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

3

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 2

Hydrograph type	= SCS Runoff	Peak discharge	= 1.650 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 4,611 cuft
Drainage area	= 1.009 ac	Curve number	= 96
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 2.950 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 8,129 cuft
Drainage area	= 1.903 ac	Curve number	= 95
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

Hydrograph type	= SCS Runoff	Peak discharge	= 1.505 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 4,205 cuft
Drainage area	= 0.920 ac	Curve number	= 96
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 5

Basin 5

Hydrograph type	= SCS Runoff	Peak discharge	= 1.882 cfs
Storm frequency	= 50 yrs	Time to peak	= 735 min
Time interval	= 5 min	Hyd. volume	= 10,990 cuft
Drainage area	= 9.013 ac	Curve number	= 77
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 30.12 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 6

Hydrograph type	= SCS Runoff	Peak discharge	= 0.383 cfs
Storm frequency	= 50 yrs	Time to peak	= 725 min
Time interval	= 5 min	Hyd. volume	= 1,461 cuft
Drainage area	= 1.590 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 15.10 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 7

Hydrograph type	= SCS Runoff	Peak discharge	= 6.133 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 16,898 cuft
Drainage area	= 3.955 ac	Curve number	= 95
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 8

Basin 8

Hydrograph type	= SCS Runoff	Peak discharge	= 0.896 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 2,422 cuft
Drainage area	= 0.797 ac	Curve number	= 90
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 9

Basin 9

Hydrograph type	= SCS Runoff	Peak discharge	= 3.900 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 10,168 cuft
Drainage area	= 2.477 ac	Curve number	= 93
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

11

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 10

Basin 10

Hydrograph type	= SCS Runoff	Peak discharge	= 2.216 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 5,987 cuft
Drainage area	= 1.970 ac	Curve number	= 90
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

Hydrograph type	= SCS Runoff	Peak discharge	= 0.189 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 555 cuft
Drainage area	= 0.106 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

13

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 12

Hydrograph type	= SCS Runoff	Peak discharge	= 0.192 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 562 cuft
Drainage area	= 0.107 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 13

Hydrograph type	= SCS Runoff	Peak discharge	= 0.106 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 310 cuft
Drainage area	= 0.059 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

SCS Runoff	Peak discharge	= 0.138 cfs
50 yrs	Time to peak	= 720 min
5 min	Hyd. volume	= 404 cuft
0.077 ac	Curve number	= 98
0.0 %	Hydraulic length	= 0 ft
User	Time of conc. (Tc)	= 10.00 min
1.76 in	Distribution	= Type II
24 hrs	Shape factor	= 484
	SCS Runoff 50 yrs 5 min 0.077 ac 0.0 % User 1.76 in 24 hrs	SCS RunoffPeak discharge50 yrsTime to peak5 minHyd. volume0.077 acCurve number0.0 %Hydraulic lengthUserTime of conc. (Tc)1.76 inDistribution24 hrsShape factor

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 15

Hydrograph type	= SCS Runoff	Peak discharge	= 0.121 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 327 cuft
Drainage area	= 0.094 ac	Curve number	= 92*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.060 x 98) + (0.040 x 82)] / 0.094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 16

Hydrograph type	= SCS Runoff	Peak discharge	= 0.121 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 327 cuft
Drainage area	= 0.094 ac	Curve number	= 92*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.058 x 98) + (0.036 x 82)] / 0.094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 17

Hydrograph type	= SCS Runoff	Peak discharge	= 0.129 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 350 cuft
Drainage area	= 0.094 ac	Curve number	= 93*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.062 x 98) + (0.032 x 82)] / 0.094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 18

Hydrograph type	= SCS Runoff	Peak discharge	= 0.121 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 327 cuft
Drainage area	= 0.094 ac	Curve number	= 92*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.060 x 98) + (0.040 x 82)] / 0.094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 19

Hydrograph type	= SCS Runoff	Peak discharge	= 0.121 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 327 cuft
Drainage area	= 0.094 ac	Curve number	= 92*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.058 x 98) + (0.036 x 82)] / 0.094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 20

Hydrograph type	= SCS Runoff	Peak discharge	= 0.121 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 327 cuft
Drainage area	= 0.094 ac	Curve number	= 92
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 21

Hydrograph type	= SCS Runoff	Peak discharge	= 0.121 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 327 cuft
Drainage area	= 0.094 ac	Curve number	= 92
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 22

Hydrograph type	= SCS Runoff	Peak discharge	= 0.121 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 327 cuft
Drainage area	= 0.094 ac	Curve number	= 92
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 23

SCS Runoff	Peak discharge	= 0.121 cfs
= 50 yrs	Time to peak	= 720 min
5 min	Hyd. volume	= 327 cuft
= 0.094 ac	Curve number	= 92
= 0.0 %	Hydraulic length	= 0 ft
User	Time of conc. (Tc)	= 10.00 min
= 1.76 in	Distribution	= Type II
= 24 hrs	Shape factor	= 484
	 SCS Runoff 50 yrs 5 min 0.094 ac 0.0 % User 1.76 in 24 hrs 	SCS RunoffPeak discharge50 yrsTime to peak5 minHyd. volume0.094 acCurve number0.0 %Hydraulic lengthUserTime of conc. (Tc)1.76 inDistribution24 hrsShape factor

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 24

Hydrograph type	= SCS Runoff	Peak discharge	= 0.091 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 247 cuft
Drainage area	= 0.094 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 25

Hydrograph type	= SCS Runoff	Peak discharge	= 0.091 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 247 cuft
Drainage area	= 0.094 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 26

Hydrograph type	= SCS Runoff	Peak discharge	= 0.091 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 247 cuft
Drainage area	= 0.094 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 27

Hydrograph type	= SCS Runoff	Peak discharge	= 0.121 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 327 cuft
Drainage area	= 0.094 ac	Curve number	= 92
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 28

Hydrograph type	= SCS Runoff	Peak discharge	= 0.121 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 327 cuft
Drainage area	= 0.094 ac	Curve number	= 92
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 29

Hydrograph type	= SCS Runoff	Peak discharge	= 0.129 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 350 cuft
Drainage area	= 0.094 ac	Curve number	= 93
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 30

Hydrograph type	= SCS Runoff	Peak discharge	= 0.129 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 350 cuft
Drainage area	= 0.094 ac	Curve number	= 93
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 31

Hydrograph type	= SCS Runoff	Peak discharge	= 0.129 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 350 cuft
Drainage area	= 0.094 ac	Curve number	= 93
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 32

Hydrograph type	= SCS Runoff	Peak discharge	= 0.129 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 350 cuft
Drainage area	= 0.094 ac	Curve number	= 93
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 33

Hydrograph type	= SCS Runoff	Peak discharge	= 0.129 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 350 cuft
Drainage area	= 0.094 ac	Curve number	= 93
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 34

Hydrograph type =	SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency =	50 yrs	Time to peak	= 720 min
Time interval =	5 min	Hyd. volume	= 490 cuft
Drainage area =	= 0.094 ac	Curve number	= 98
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	User	Time of conc. (Tc)	= 10.00 min
Total precip. =	≔ 1.76 in	Distribution	= Type II
Storm duration =	24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 35

Hydrograph type	= SCS Runoff	Peak discharge	= 0.311 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 911 cuft
Drainage area	= 0.174 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.549	5	725	2,150				Basin 1
2	SCS Runoff	1.919	5	720	5,406				Basin 2
3	SCS Runoff	3.459	5	720	9,601				Basin 3
4	SCS Runoff	1.750	5	720	4,930				Basin 4
5	SCS Runoff	2.829	5	735	15,121				Basin 5
6	SCS Runoff	0.595	5	720	2,061				Basin 6
7	SCS Runoff	7.190	5	720	19,959				Basin 7
8	SCS Runoff	1.100	5	720	2,968				Basin 8
9	SCS Runoff	4.651	2	720	12,188				Basin 9
10	SCS Runoff	2.718	5	720	7,336				Basin 10
11	SCS Runoff	0.217	5	720	641				R1
12	SCS Runoff	0.220	5	720	649				R2
13	SCS Runoff	0.121	5	720	358				R3
14	SCS Runoff	0.158	5	720	466				R4
15	SCS Runoff	0.145	5	720	394				R5
16	SCS Runoff	0.145	5	720	394				R6
17	SCS Runoff	0.154	5	720	419				R7
18	SCS Runoff	0.145	5	720	394				R8
19	SCS Runoff	0.145	5	720	394				R9
20	SCS Runoff	0.145	5	720	394				R10
21	SCS Runoff	0.145	5	720	394				R11
22	SCS Runoff	0.145	5	720	394				R12
23	SCS Runoff	0.145	5	720	394				R13
24	SCS Runoff	0.114	5	720	308				R14
25	SCS Runoff	0.114	5	720	308				R15
26	SCS Runoff	0.114	5	720	308				R16
27	SCS Runoff	0.145	5	720	394				R17
28	SCS Runoff	0.145	5	720	394				R18
29	SCS Runoff	0.154	5	720	419				R19
30	SCS Runoff	0.154	5	720	419				R20
31	SCS Runoff	0.154	5	720	419				R21
32	SCS Runoff	0.154	5	720	419				R22
33	SCS Runoff	0.154	5	720	419				R23
34	SCS Runoff	0.191	5	720	566				R24
Hydraflow(Pre-Dev).gpw		Return F	Period: 100	Year	Tuesday, 0	5 / 17 / 2022			

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
35	SCS Runoff	0.356	5	720	1,052				R25
Нус	draflow(Pre-De	ev).gpw			Return P	eriod: 100	Year	Tuesday, 0	5 / 17 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 1

Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.549 cfs
Storm frequency	= 100 yrs	Time to peak	= 725 min
Time interval	= 5 min	Hyd. volume	= 2,150 cuft
Drainage area	= 2.162 ac	Curve number	= 72
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 11.80 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

40

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 2

Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 1.919 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 5,406 cuft
Drainage area	= 1.009 ac	Curve number	= 96
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 3

Basin 3

Hydrograph type	= SCS Runoff	Peak discharge	= 3.459 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 9,601 cuft
Drainage area	= 1.903 ac	Curve number	= 95
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

Basin 4

Hydrograph type	= SCS Runoff	Peak discharge	= 1.750 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 4,930 cuft
Drainage area	= 0.920 ac	Curve number	= 96
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 5

Basin 5

Hydrograph type	= SCS Runoff	Peak discharge	= 2.829 cfs
Storm frequency	= 100 yrs	Time to peak	= 735 min
Time interval	= 5 min	Hyd. volume	= 15,121 cuft
Drainage area	= 9.013 ac	Curve number	= 77
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 30.12 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 6

Basin 6

Hydrograph type	= SCS Runoff	Peak discharge	= 0.595 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 2,061 cuft
Drainage area	= 1.590 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 15.10 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 7

Basin 7

Hydrograph type	= SCS Runoff	Peak discharge	= 7.190 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 19,959 cuft
Drainage area	= 3.955 ac	Curve number	= 95
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 8

Basin 8

Hydrograph type	= SCS Runoff	Peak discharge	= 1.100 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 2,968 cuft
Drainage area	= 0.797 ac	Curve number	= 90
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 9

Basin 9

Hydrograph type	= SCS Runoff	Peak discharge	= 4.651 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 12,188 cuft
Drainage area	= 2.477 ac	Curve number	= 93
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

48

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 10

Basin 10

Hydrograph type	= SCS Runoff	Peak discharge	= 2.718 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 7,336 cuft
Drainage area	= 1.970 ac	Curve number	= 90
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

Hydrograph type	= SCS Runoff	Peak discharge	= 0.217 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 641 cuft
Drainage area	= 0.106 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 12

Hydrograph type	= SCS Runoff	Peak discharge	= 0.220 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 649 cuft
Drainage area	= 0.107 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 13

Hydrograph type	= SCS Runoff	Peak discharge	= 0.121 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 358 cuft
Drainage area	= 0.059 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Tuesday, 05 / 17 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

SCS Runoff	Peak discharge	= 0.158 cfs
100 yrs	Time to peak	= 720 min
5 min	Hyd. volume	= 466 cuft
0.077 ac	Curve number	= 98
0.0 %	Hydraulic length	= 0 ft
User	Time of conc. (Tc)	= 10.00 min
2.00 in	Distribution	= Type II
24 hrs	Shape factor	= 484
	SCS Runoff 100 yrs 5 min 0.077 ac 0.0 % User 2.00 in 24 hrs	SCS RunoffPeak discharge100 yrsTime to peak5 minHyd. volume0.077 acCurve number0.0 %Hydraulic lengthUserTime of conc. (Tc)2.00 inDistribution24 hrsShape factor

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 15

Hydrograph type	= SCS Runoff	Peak discharge	= 0.145 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 394 cuft
Drainage area	= 0.094 ac	Curve number	= 92*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.060 x 98) + (0.040 x 82)] / 0.094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 16

Hydrograph type =	SCS Runoff	Peak discharge	= 0.145 cfs
Storm frequency =	= 100 yrs	Time to peak	= 720 min
Time interval =	= 5 min	Hyd. volume	= 394 cuft
Drainage area =	= 0.094 ac	Curve number	= 92*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= User	Time of conc. (Tc)	= 10.00 min
Total precip. =	= 2.00 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.058 x 98) + (0.036 x 82)] / 0.094

55

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 17

Hydrograph type	= SCS Runoff	Peak discharge	= 0.154 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 419 cuft
Drainage area	= 0.094 ac	Curve number	= 93*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.062 x 98) + (0.032 x 82)] / 0.094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 18

Hydrograph type	= SCS Runoff	Peak discharge	= 0.145 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 394 cuft
Drainage area	= 0.094 ac	Curve number	= 92*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.060 x 98) + (0.040 x 82)] / 0.094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 19

Hydrograph type	= SCS Runoff	Peak discharge	= 0.145 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 394 cuft
Drainage area	= 0.094 ac	Curve number	= 92*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.058 x 98) + (0.036 x 82)] / 0.094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 20

Hydrograph type	= SCS Runoff	Peak discharge	= 0.145 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 394 cuft
Drainage area	= 0.094 ac	Curve number	= 92
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 21

Hydrograph type	= SCS Runoff	Peak discharge	= 0.145 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 394 cuft
Drainage area	= 0.094 ac	Curve number	= 92
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 22

Hydrograph type	= SCS Runoff	Peak discharge	= 0.145 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 394 cuft
Drainage area	= 0.094 ac	Curve number	= 92
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 23

Hydrograph type	= SCS Runoff	Peak discharge	= 0.145 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 394 cuft
Drainage area	= 0.094 ac	Curve number	= 92
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 24

Hydrograph type =	SCS Runoff	Peak discharge	= 0.114 cfs
Storm frequency =	100 yrs	Time to peak	= 720 min
Time interval =	5 min	Hyd. volume	= 308 cuft
Drainage area =	0.094 ac	Curve number	= 88
Basin Slope =	0.0 %	Hydraulic length	= 0 ft
Tc method =	User	Time of conc. (Tc)	= 10.00 min
Total precip. =	2.00 in	Distribution	= Type II
Storm duration =	24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 25

Hydrograph type =	SCS Runoff	Peak discharge	= 0.114 cfs
Storm frequency =	100 yrs	Time to peak	= 720 min
Time interval =	5 min	Hyd. volume	= 308 cuft
Drainage area =	0.094 ac	Curve number	= 88
Basin Slope =	0.0 %	Hydraulic length	= 0 ft
Tc method =	User	Time of conc. (Tc)	= 10.00 min
Total precip. =	2.00 in	Distribution	= Type II
Storm duration =	24 hrs	Shape factor	= 484

Tuesday, 05 / 17 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 26

Hydrograph type	= SCS Runoff	Peak discharge	= 0.114 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 308 cuft
Drainage area	= 0.094 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 27

Hydrograph type	= SCS Runoff	Peak discharge	= 0.145 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 394 cuft
Drainage area	= 0.094 ac	Curve number	= 92
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 28

Hydrograph type	= SCS Runoff	Peak discharge	= 0.145 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 394 cuft
Drainage area	= 0.094 ac	Curve number	= 92
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 29

Hydrograph type =	SCS Runoff	Peak discharge	= 0.154 cfs
Storm frequency =	100 yrs	Time to peak	= 720 min
Time interval =	5 min	Hyd. volume	= 419 cuft
Drainage area =	0.094 ac	Curve number	= 93
Basin Slope =	0.0 %	Hydraulic length	= 0 ft
Tc method =	User	Time of conc. (Tc)	= 10.00 min
Total precip. =	2.00 in	Distribution	= Type II
Storm duration =	24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 30

Hydrograph type	= SCS Runoff	Peak discharge	= 0.154 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 419 cuft
Drainage area	= 0.094 ac	Curve number	= 93
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 31

Hydrograph type	= SCS Runoff	Peak discharge	= 0.154 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 419 cuft
Drainage area	= 0.094 ac	Curve number	= 93
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 32

Hydrograph type	= SCS Runoff	Peak discharge	= 0.154 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 419 cuft
Drainage area	= 0.094 ac	Curve number	= 93
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 33

Hydrograph type	= SCS Runoff	Peak discharge	= 0.154 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 419 cuft
Drainage area	= 0.094 ac	Curve number	= 93
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 34

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 35

Hydrograph type	= SCS Runoff	Peak discharge	= 0.356 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 1,052 cuft
Drainage area	= 0.174 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

74

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

50 - Year

Summary Report	1
Hydrograph Reports	3
Hydrograph No. 1, SCS Runoff, Basin 1	3
Hydrograph No. 2, SCS Runoff, Basin 2	4
Hydrograph No. 3, SCS Runoff, Basin 3	5
Hydrograph No. 4, SCS Runoff, Basin 4	6
Hydrograph No. 5, SCS Runoff, Basin 5	7
Hydrograph No. 6, SCS Runoff, Basin 6	8
Hydrograph No. 7, SCS Runoff, Basin 7	9
Hydrograph No. 8, SCS Runoff, Basin 8	10
Hydrograph No. 9, SCS Runoff, Basin 9	11
Hydrograph No. 10, SCS Runoff, Basin 10	12
Hydrograph No. 11, SCS Runoff, R1	13
Hydrograph No. 12, SCS Runoff, R2	14
Hydrograph No. 13, SCS Runoff, R3	15
Hydrograph No. 14, SCS Runoff, R4	16
Hydrograph No. 15, SCS Runoff, R5	17
Hydrograph No. 16, SCS Runoff, R6	18
Hydrograph No. 17, SCS Runoff, R7	19
Hydrograph No. 18, SCS Runoff, R8	20
Hydrograph No. 19, SCS Runoff, R9	21
Hydrograph No. 20, SCS Runoff, R10	22
Hydrograph No. 21, SCS Runoff, R11	23
Hydrograph No. 22, SCS Runoff, R12	24
Hydrograph No. 23, SCS Runoff, R13	25
Hydrograph No. 24, SCS Runoff, R14	26
Hydrograph No. 25, SCS Runoff, R15	27
Hydrograph No. 26, SCS Runoff, R16	28
Hydrograph No. 27, SCS Runoff, R17	29
Hydrograph No. 28, SCS Runoff, R18	30
Hydrograph No. 29, SCS Runoff, R19	31
Hydrograph No. 30, SCS Runoff, R20	32
Hydrograph No. 31, SCS Runoff, R21	33
Hydrograph No. 32, SCS Runoff, R22	34
Hydrograph No. 33, SCS Runoff, R23	35
Hydrograph No. 34, SCS Runoff, R24	36
Hydrograph No. 35, SCS Runoff, R25	37

100 - Year

Summary Report	38
Hydrograph Reports	40
Hydrograph No. 1, SCS Runoff, Basin 1	40
Hydrograph No. 2, SCS Runoff, Basin 2	41
Hydrograph No. 3, SCS Runoff, Basin 3	42
Hydrograph No. 4, SCS Runoff, Basin 4	43
Hydrograph No. 5, SCS Runoff, Basin 5	44
Hydrograph No. 6, SCS Runoff, Basin 6	45
Hydrograph No. 7, SCS Runoff, Basin 7	46

17
18
19
50
51
52
53
54
55
56
57
58
59
30
31
32
33
)4
<u>}5</u>
6
37
38
39
'0
1
'2
'3
'4
トレレンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシンシン

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.309	5	725	1,453				Basin 1
2	SCS Runoff	1.650	5	720	4,611				Basin 2
3	SCS Runoff	2.950	5	720	8,129				Basin 3
4	SCS Runoff	1.505	5	720	4,205				Basin 4
5	SCS Runoff	1.882	5	735	10,990				Basin 5
6	SCS Runoff	0.383	5	725	1,461				Basin 6
7	SCS Runoff	6.133	5	720	16,898				Basin 7
8	SCS Runoff	0.896	5	720	2,422				Basin 8
9	SCS Runoff	3.900	2	720	10,168				Basin 9
10	SCS Runoff	2.216	5	720	5,987				Basin 10
11	SCS Runoff	0.189	5	720	555				R1
12	SCS Runoff	0.192	5	720	562				R2
13	SCS Runoff	0.106	5	720	310				R3
14	SCS Runoff	0.138	5	720	404				R4
15	SCS Runoff	0.167	5	720	490				R5
16	SCS Runoff	0.167	5	720	490				R6
17	SCS Runoff	0.167	5	720	490				R7
18	SCS Runoff	0.167	5	720	490				R8
19	SCS Runoff	0.167	5	720	490				R9
20	SCS Runoff	0.167	5	720	490				R10
21	SCS Runoff	0.167	5	720	490				R11
22	SCS Runoff	0.167	5	720	490				R12
23	SCS Runoff	0.167	5	720	490				R13
24	SCS Runoff	0.167	5	720	490				R14
25	SCS Runoff	0.167	5	720	490				R15
26	SCS Runoff	0.167	5	720	490				R16
27	SCS Runoff	0.167	5	720	490				R17
28	SCS Runoff	0.167	5	720	490				R18
29	SCS Runoff	0.167	5	720	490				R19
30	SCS Runoff	0.167	5	720	490				R20
31	SCS Runoff	0.167	5	720	490				R21
32	SCS Runoff	0.167	5	720	490				R22
33	SCS Runoff	0.167	5	720	490				R23
34	SCS Runoff	0.167	5	720	490				R24
Hydraflow(Post-Dev).gpw		Return P	eriod: 50 Y	′ear	Tuesday, 0	5 / 17 / 2022			

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
35	SCS Runoff	0.311	5	720	911				R25
Нус	draflow(Post-E	Dev).gpw			Return P	eriod: 50 Y	/ear	Tuesday, 0	5 / 17 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 1

Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.309 cfs
Storm frequency	= 50 yrs	Time to peak	= 725 min
Time interval	= 5 min	Hyd. volume	= 1,453 cuft
Drainage area	= 2.162 ac	Curve number	= 72
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 11.80 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 2

Hydrograph type	= SCS Runoff	Peak discharge	= 1.650 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 4,611 cuft
Drainage area	= 1.009 ac	Curve number	= 96
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 2.950 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 8,129 cuft
Drainage area	= 1.903 ac	Curve number	= 95
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

Hydrograph type	= SCS Runoff	Peak discharge	= 1.505 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 4,205 cuft
Drainage area	= 0.920 ac	Curve number	= 96
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 5

Basin 5

Hydrograph type	= SCS Runoff	Peak discharge	= 1.882 cfs
Storm frequency	= 50 yrs	Time to peak	= 735 min
Time interval	= 5 min	Hyd. volume	= 10,990 cuft
Drainage area	= 9.013 ac	Curve number	= 77
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 30.10 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 6

Hydrograph type	= SCS Runoff	Peak discharge	= 0.383 cfs
Storm frequency	= 50 yrs	Time to peak	= 725 min
Time interval	= 5 min	Hyd. volume	= 1,461 cuft
Drainage area	= 1.590 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 15.10 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 7

Hydrograph type	= SCS Runoff	Peak discharge	= 6.133 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 16,898 cuft
Drainage area	= 3.955 ac	Curve number	= 95
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 8

Basin 8

Hydrograph type	= SCS Runoff	Peak discharge	= 0.896 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 2,422 cuft
Drainage area	= 0.797 ac	Curve number	= 90
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 9

Basin 9

Hydrograph type	= SCS Runoff	Peak discharge	= 3.900 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 10,168 cuft
Drainage area	= 2.477 ac	Curve number	= 93
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 10

Basin 10

Hydrograph type	= SCS Runoff	Peak discharge	= 2.216 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 5,987 cuft
Drainage area	= 1.970 ac	Curve number	= 90
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

Hydrograph type	= SCS Runoff	Peak discharge	= 0.189 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 555 cuft
Drainage area	= 0.106 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

13

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 12

Hydrograph type	= SCS Runoff	Peak discharge	= 0.192 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 562 cuft
Drainage area	= 0.107 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 13

Hydrograph type	= SCS Runoff	Peak discharge	= 0.106 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 310 cuft
Drainage area	= 0.059 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

SCS Runoff	Peak discharge	= 0.138 cfs
50 yrs	Time to peak	= 720 min
5 min	Hyd. volume	= 404 cuft
0.077 ac	Curve number	= 98
0.0 %	Hydraulic length	= 0 ft
User	Time of conc. (Tc)	= 10.00 min
1.76 in	Distribution	= Type II
24 hrs	Shape factor	= 484
	SCS Runoff 50 yrs 5 min 0.077 ac 0.0 % User 1.76 in 24 hrs	SCS RunoffPeak discharge50 yrsTime to peak5 minHyd. volume0.077 acCurve number0.0 %Hydraulic lengthUserTime of conc. (Tc)1.76 inDistribution24 hrsShape factor

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 15

Hydrograph type	= SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 490 cuft
Drainage area	= 0.094 ac	Curve number	= 98*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.060 x 98) + (0.040 x 82)] / 0.094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 16

Hydrograph type	= SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 490 cuft
Drainage area	= 0.094 ac	Curve number	= 98*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.058 x 98) + (0.036 x 82)] / 0.094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 17

Hydrograph type	= SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 490 cuft
Drainage area	= 0.094 ac	Curve number	= 98*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.062 x 98) + (0.032 x 82)] / 0.094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 18

Hydrograph type	= SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 490 cuft
Drainage area	= 0.094 ac	Curve number	= 98*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.060 x 98) + (0.040 x 82)] / 0.094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 19

Hydrograph type	= SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 490 cuft
Drainage area	= 0.094 ac	Curve number	= 98*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.058 x 98) + (0.036 x 82)] / 0.094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 20

Hydrograph type	= SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 490 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 21

Hydrograph type	= SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 490 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 22

Hydrograph type	= SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 490 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 23

Hydrograph type	= SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 490 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 24

Hydrograph type	= SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 490 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 25

Hydrograph type =	SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency =	= 50 yrs	Time to peak	= 720 min
Time interval =	= 5 min	Hyd. volume	= 490 cuft
Drainage area =	= 0.094 ac	Curve number	= 98
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= User	Time of conc. (Tc)	= 10.00 min
Total precip. =	= 1.76 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 26

Hydrograph type :	= SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency :	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 490 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope :	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration :	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 27

Hydrograph type	= SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 490 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 28

Hydrograph type	= SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 490 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 29

Hydrograph type :	= SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency :	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 490 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope :	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration :	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 30

Hydrograph type	= SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 490 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 31

Hydrograph type	= SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 490 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 32

Hydrograph type	= SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 490 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 33

Hydrograph type =	SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency =	50 yrs	Time to peak	= 720 min
Time interval =	5 min	Hyd. volume	= 490 cuft
Drainage area =	0.094 ac	Curve number	= 98
Basin Slope =	0.0 %	Hydraulic length	= 0 ft
Tc method =	User	Time of conc. (Tc)	= 10.00 min
Total precip. =	1.76 in	Distribution	= Type II
Storm duration =	24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 34

Hydrograph type =	SCS Runoff	Peak discharge	= 0.167 cfs
Storm frequency =	50 yrs	Time to peak	= 720 min
Time interval =	5 min	Hyd. volume	= 490 cuft
Drainage area =	= 0.094 ac	Curve number	= 98
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	User	Time of conc. (Tc)	= 10.00 min
Total precip. =	≔ 1.76 in	Distribution	= Type II
Storm duration =	24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 35

Hydrograph type	= SCS Runoff	Peak discharge	= 0.311 cfs
Storm frequency	= 50 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 911 cuft
Drainage area	= 0.174 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 1.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.549	5	725	2,150				Basin 1
2	SCS Runoff	1.919	5	720	5,406				Basin 2
3	SCS Runoff	3.459	5	720	9,601				Basin 3
4	SCS Runoff	1.750	5	720	4,930				Basin 4
5	SCS Runoff	2.829	5	735	15,121				Basin 5
6	SCS Runoff	0.595	5	720	2,061				Basin 6
7	SCS Runoff	7.190	5	720	19,959				Basin 7
8	SCS Runoff	1.100	5	720	2,968				Basin 8
9	SCS Runoff	4.651	2	720	12,188				Basin 9
10	SCS Runoff	2.718	5	720	7,336				Basin 10
11	SCS Runoff	0.217	5	720	641				R1
12	SCS Runoff	0.220	5	720	649				R2
13	SCS Runoff	0.121	5	720	358				R3
14	SCS Runoff	0.158	5	720	466				R4
15	SCS Runoff	0.191	5	720	566				R5
16	SCS Runoff	0.191	5	720	566				R6
17	SCS Runoff	0.191	5	720	566				R7
18	SCS Runoff	0.191	5	720	566				R8
19	SCS Runoff	0.191	5	720	566				R9
20	SCS Runoff	0.191	5	720	566				R10
21	SCS Runoff	0.191	5	720	566				R11
22	SCS Runoff	0.191	5	720	566				R12
23	SCS Runoff	0.191	5	720	566				R13
24	SCS Runoff	0.191	5	720	566				R14
25	SCS Runoff	0.191	5	720	566				R15
26	SCS Runoff	0.191	5	720	566				R16
27	SCS Runoff	0.191	5	720	566				R17
28	SCS Runoff	0.191	5	720	566				R18
29	SCS Runoff	0.191	5	720	566				R19
30	SCS Runoff	0.191	5	720	566				R20
31	SCS Runoff	0.191	5	720	566				R21
32	SCS Runoff	0.191	5	720	566				R22
33	SCS Runoff	0.191	5	720	566				R23
34	SCS Runoff	0.191	5	720	566				R24
Нус	draflow(Post-D	Dev).gpw			Return F	Period: 100	Year	Tuesday, 0	5 / 17 / 2022

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
35	SCS Runoff	0.356	5	720	1,052				R25
Нус	draflow(Post-D	Dev).gpw		<u> </u>	Return P	eriod: 100	Year	Tuesday, 0	5 / 17 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 1

Basin 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.549 cfs
Storm frequency	= 100 yrs	Time to peak	= 725 min
Time interval	= 5 min	Hyd. volume	= 2,150 cuft
Drainage area	= 2.162 ac	Curve number	= 72
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 11.80 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

40

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 2

Basin 2

Hydrograph type	= SCS Runoff	Peak discharge	= 1.919 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 5,406 cuft
Drainage area	= 1.009 ac	Curve number	= 96
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 3

Basin 3

Hydrograph type	= SCS Runoff	Peak discharge	= 3.459 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 9,601 cuft
Drainage area	= 1.903 ac	Curve number	= 95
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

Basin 4

Hydrograph type	= SCS Runoff	Peak discharge	= 1.750 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 4,930 cuft
Drainage area	= 0.920 ac	Curve number	= 96
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 5

Basin 5

Hydrograph type	= SCS Runoff	Peak discharge	= 2.829 cfs
Storm frequency	= 100 yrs	Time to peak	= 735 min
Time interval	= 5 min	Hyd. volume	= 15,121 cuft
Drainage area	= 9.013 ac	Curve number	= 77
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 30.10 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Tuesday, 05 / 17 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 6

Basin 6

Hydrograph type	= SCS Runoff	Peak discharge	= 0.595 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 2,061 cuft
Drainage area	= 1.590 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 15.10 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 7

Basin 7

Hydrograph type	= SCS Runoff	Peak discharge	= 7.190 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 19,959 cuft
Drainage area	= 3.955 ac	Curve number	= 95
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 8

Basin 8

Hydrograph type	= SCS Runoff	Peak discharge	= 1.100 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 2,968 cuft
Drainage area	= 0.797 ac	Curve number	= 90
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 9

Basin 9

Hydrograph type	= SCS Runoff	Peak discharge	= 4.651 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 12,188 cuft
Drainage area	= 2.477 ac	Curve number	= 93
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

48

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 10

Basin 10

Hydrograph type	= SCS Runoff	Peak discharge	= 2.718 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 7,336 cuft
Drainage area	= 1.970 ac	Curve number	= 90
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

Hydrograph type	= SCS Runoff	Peak discharge	= 0.217 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 641 cuft
Drainage area	= 0.106 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 12

Hydrograph type	= SCS Runoff	Peak discharge	= 0.220 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 649 cuft
Drainage area	= 0.107 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 13

Hydrograph type	= SCS Runoff	Peak discharge	= 0.121 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 358 cuft
Drainage area	= 0.059 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Tuesday, 05 / 17 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

SCS Runoff	Peak discharge	= 0.158 cfs
100 yrs	Time to peak	= 720 min
5 min	Hyd. volume	= 466 cuft
0.077 ac	Curve number	= 98
0.0 %	Hydraulic length	= 0 ft
User	Time of conc. (Tc)	= 10.00 min
2.00 in	Distribution	= Type II
24 hrs	Shape factor	= 484
	SCS Runoff 100 yrs 5 min 0.077 ac 0.0 % User 2.00 in 24 hrs	SCS RunoffPeak discharge100 yrsTime to peak5 minHyd. volume0.077 acCurve number0.0 %Hydraulic lengthUserTime of conc. (Tc)2.00 inDistribution24 hrsShape factor

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 15

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.060 x 98) + (0.040 x 82)] / 0.094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 16

Hydrograph type =	SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency =	= 100 yrs	Time to peak	= 720 min
Time interval =	= 5 min	Hyd. volume	= 566 cuft
Drainage area =	= 0.094 ac	Curve number	= 98*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= User	Time of conc. (Tc)	= 10.00 min
Total precip. =	= 2.00 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.058 x 98) + (0.036 x 82)] / 0.094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 17

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.062 x 98) + (0.032 x 82)] / 0.094

56

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 18

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.060 x 98) + (0.040 x 82)] / 0.094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 19

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.058 x 98) + (0.036 x 82)] / 0.094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 20

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 21

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 22

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 23

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 24

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Tuesday, 05 / 17 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 25

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 26

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 27

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

66

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 28

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 29

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

68

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 30

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 31

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 32

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 33

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 34

Hydrograph type	= SCS Runoff	Peak discharge	= 0.191 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 566 cuft
Drainage area	= 0.094 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 35

Hydrograph type	= SCS Runoff	Peak discharge	= 0.356 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 5 min	Hyd. volume	= 1,052 cuft
Drainage area	= 0.174 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Tuesday, 05 / 17 / 2022

APPENDIX D

ROADWAY FLOW/DISCHARGE DATA

CURB INLET FLOW DATA

STORMWATER NETWORK DATA

STORMWATER NETWORK PROFILES

SSA PLOT SUMMARY TABLES

				100 yr 3torr	nevent					
				Left (West) Sid	e			Right (Eas	t) Side	
Station ID	Description	Road		SSA Discharge L (cfs)	Flow Depth (ft)	Flow Top		SSA Discharge R	Flow Depth	Flow Top
		Slope				Width (ft)		(cfs)	(ft)	Width (ft)
		(ft/ft)								
1+15.98	R2 Out	7.3%		0.16	0.03	3.29		0.15	0.02	3.25
2.35.38	R5 Out & BSN-2 Out	4.6%		0.28	0.04	3.99		2.93	0.13	8.36
3+54.23	R6 Out	6.0%		0.40	0.05	4.25	CDI E1	3.06	0.12	8.09
4+73.84	R7 Out	5.5%		0.53	0.05	4.65		1.21	0.08	6.02
5+81.94	BSN-4 Out							3.64	0.14	9.09
5+92.41	R8 Out	4.4%		0.65	0.06	5.1	CDI E2	3.76	0.14	9.2
7+07.83	R9 Out	5.5%		0.78	0.06	5.23		0.12	0.02	3.19
8+25.07	R10 Out	4.1%		0.90	0.07	5.72		0.25	0.04	3.93
9+43.52	R11 Out	5.1%		1.02	0.08	5.75		0.37	0.05	4.25
10+59.22	R12 Out	4.1%		1.15	0.08	6.21		0.50	0.06	4.78
11+75.27	R13 Out	3.6%		1.27	0.09	6.54		0.62	0.06	5.21
12+90.66	R14 Out	3.9%		1.40	0.09	6.68		0.74	0.07	5.43
13+63.94	BSN-5 Out		CDI W1	5.67	0.18	10.86				
14+08.89	R15 Out	3.3%		1.04	0.08	6.22		0.87	0.08	5.86
15+26.96	R16 Out	4.2%		1.08	0.07	5.63		0.99	0.08	5.87
16+44.77	R17 Out	4.8%		1.12	0.08	6		1.11	0.08	5.98
17+61.94	R18 Out	3.4%		1.16	0.09	6.4		1.24	0.09	6.55
18+79.45	R19 Out	2.9%		1.12	0.05	4.54		1.36	0.06	4.81
19+05.09	BSN-8 Out		CDI W2	2.37	0.07	5.7				
19+95.57	R20 Out	2.3%		0.63	0.07	5.61	CDI E3	0.12	0.03	3.53
21+11.61	R21 Out	1.4%		0.74	0.09	6.39		0.12	0.03	3.74
22+19.46	BSN-9		CDI W3	6.61	0.24	13.83				
22+30.69	R22 Out	1.5%		1.84	0.13	8.63		0.25	0.05	4.52
23+48.52	R23 Out	1.5%		1.97	0.14	8.84		0.37	0.06	5.07
24+67.96	R24 Out	2.6%		3.27	0.15	9.59		0.50	0.03	3.66
25+48.16	R25 Out	2.3%		CDI 105W				CDI 105E		

ROADWAY FLOW DATA

Left (West) Side														
			Peak	Flow	Flow									
		# of	Inflow	Intercepted	Bypassing									
	Type of Inlet	Inlets	(cfs)	(cfs)	Inlet (cfs)									
CDI W1	Neenah R_3067_L	2	5.67	4.67	1.00									
CDI W2	Neenah R_3067_L	1	2.37	1.83	0.53									
CDI W3	Neenah R_3067_L	2	6.61	4.90	1.71									
CDI 105W		2	3.27	3.27	0.00									

	Ri	ght (East) Sid	le		
			Peak	Flow	Flow
			Inflow	Intercepted	Bypassing
	Type of Inlet	# of Inlets	(cfs)	(cfs)	Inlet (cfs)
CDI E1	Neenah R_3067_L	1	3.06	1.97	1.09
CDI E2	Neenah R_3067_L	2	3.76	3.67	0.00
CDI E3	Neenah R_3067_L	1	1.36	1.36	0.00
CDI 105E		2	0.50	0.50	0.00

INLET FLOW DATA

				STORMW	ATER NETWO	RK DATA			
	Invert Elevation	Rim Elevation	Peak Inflow (cfs)		Length (ft)	Slope (%)	Pipe Diameter (in)	Peak Flow (cfs)	Design Flow Capacity
MH-1	5531.5	5535.5	1.26	Link 1	90.56	6.86	24	1.26	51.35
MH-2	5525.29	5530	3.21	Link 2	200.2	4.64	24	3.21	42.23
MH-3	5516	5520.4	8.06	Link 3	39.8	5.83	24	8.06	47.34
MH-4	5513.68	5518	11.82	Link 4	205.98	5.31	24	11.82	45.18
MH-5	5502.75	5508.25	13.35	Link 5	288.8	3.98	24	13.35	39.11
MH-6	5491.26	5495.5	13.35	Link 6	275.36	3.57	24	13.35	37.04
MH-7	5481.44	5484.9	17.37	Link 7	257.14	3.9	24	17.37	38.72
MH-8	5471.42	5474	17.37	Link 8	184.74	4.3	24	17.37	40.66
MH-9	5462.98	5467.5	27.45	Link 9	98.17	2.22	24	27.45	29.21
MH-10	5460.8	5464.3	29.27	Link 10	90.68	2.97	24	29.27	33.79
MH-11	5458.11	5463.75	30.76	Link 11	224.63	1.12	30	30.76	37.62
MH-12	5455.59	5459.5	35.65	Link 12	285.88	1.26	30	35.65	39.9
MH-13	5452	5453.5	35.65	Link 13	57.91	1.33	30	35.65	41
	E	XISTING				EX	ISTING		Design Flow Capacity
CDI-105E	5451.13	5456.15	39.90	DS-105A	109	6.52	24	39.90	50.06
MH-105	5444.02	5455.57	67.09	DS-105	273	1.95	30	67.09	67.69
MH-106	5438.7	5450.22	72.09	DS-106	153	0.59	48	72.09	130.4
MH-107	5437.8	5446.67	77.09	DS-107	317	0.5	48	77.09	120.04
MH-108	5436.21	5442.78	77.09	DS-108	171	0.48	48	77.09	117.61
MH-109	5435.39	5442.24	82.09	DS-109	77	0.51	48	82.09	121.23
MH-110	5435	5442.37	82.09	DS-110	112	0.49	48	82.09	118.83
MH-111	5434.45	5442.95	82.09	DS-111	68	1.15	48	82.09	182.05

23.16 10.32 1.34

26.19 8.28 1.54

30.83 9.17 1.62

33.85 17.11

1.21

30.83 8.96 1.65

0.89 6.08 0.19

Max 0 (cfs);

Max Vel (ft/s): Max Depth (ft):

6.96 10.78 0.52

2.73 7.49 0.35

10.10

11.58 0.64

11.29 10.76 0.74

11.29 10.34

0.76

Profile Plot

1.26 6.39 0.23

Max 0 (cfs);

Max Vel (ft/s): Max Depth (ft):

8.06 11.22 0.56

3.21 7.95 0.37

11.82 12.10 0.70

13.35 11.26 0.81

13.35 10.82 0.83

35.65 9.40 1.80

35.65 9.17 1.85

39.90 17.70 1.35

29.27 12.09 1.44

30.76 8.55 1.72

Profile Plot

	Road Plot Summary Table (West Side)																									
Node ID:	CDI_EX-1	Jun-R2-L	Jun-R5-L	Jun-R6-L	Jun-R7-L	Jun-R8-L	Jun-R9-L	Jun-R10-L	Jun-R11-L	Jun-R12-L	Jun-R13-L	Jun-R14-L	CDI-W1	Jun-R15-L	Jun-R16-L	Jun-R17-L	Jun-R18-L	Jun-R19-L	CDI-W2	Jun-R20-L	Jun-R21-L	CDI-W3	Jun-R22-L	Jun-R23-L	Jun-R24-L	CD-105W
Rim (ft):	5549.43	5542.32	5536.94	5529.7	5523.11	5517.94	5511.65	5506.93	5500.94	5496.35	5492.14	5487.62	5485	5483.6	5478.69	5473.15	5469.27	5465.79	5465.35	5463	5461.41	5459.93	5459.79	5457.82	5457.41	5457
Invert (ft):	5542.68	5542.32	5536.94	5529.7	5523.11	5517.94	5511.65	5506.93	5500.94	5496.35	5492.14	5487.62	5481	5483.6	5478.69	5473.15	5469.27	5465.79	5461.35	5463	5461.41	5455.79	5459.79	5457.82	5457.41	5452
Min Pipe Cover (ft):		0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0		0	0		0	0	0	
Max HGL (ft):	5543.01	5542.35	5536.98	5529.74	5523.16	5518	5511.72	5507	5501.01	5496.43	5492.22	5487.71	5482.97	5483.68	5478.76	5473.23	5469.36	5465.89	5463.1	5463.08	5461.49	5457.71	5459.92	5458	5457.62	5457
Link ID:	Link-Road-2L	Link-R5-L	Link-R6-L	Link-R7-L	Link-R8-	L Link-R9-L	Link-R10-L	Link-R11-L	Link-R12-L	Link-R13-L	Link-R14-L	Link-R15-L-1	Link-R15-L-2	Link-R16-L	Link-R17-L	Link-117	Link-118	Link-R20-L-1	Link-R20-L-2	Link-R21-L	Link-R22-L-1	Link-R22-L-2	Link-R23-L	Link-R24-L	Link-R25-L	
Length (ft):	119.24	119.41	118.54	119.78	119.67	116.09	118.63	117.53	113.04	115.25	116.1	73.84	45.43	118.15	117.94	116.64	116.81	25.75	91.22	116.86	107.84	11.3	117.69	119.94	89.09	
Dia (in):	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	
Slope (ft/ft):	0.0596	0.0451	0.0611	0.055	0.0432	0.0542	0.0398	0.051	0.0406	0.0365	0.0389	0.0355	0.0308	0.0416	0.047	0.0333	0.0298	0.0171	0.0258	0.0136	0.0137	0.0124	0.0167	0.0034	0.0046	
Up Invert (ft):	5549.43	5542.32	5536.94	5529.7	5523.11	5517.94	5511.65	5506.93	5500.94	5496.35	5492.14	5487.62	5485	5483.6	5478.69	5473.15	5469.27	5465.79	5465.35	5463	5461.41	5459.93	5459.79	5457.82	5457.41	
Dn Invert (ft):	5542.32	5536.94	5529.7	5523.11	5517.94	5511.65	5506.93	5500.94	5496.35	5492.14	5487.62	5485	5483.6	5478.69	5473.15	5469.27	5465.79	5465.35	5463	5461.41	5459.93	5459.79	5457.82	5457.41	5457	
Max Q (cfs):	0.02	0.16	0.28	0.4	0.53	0.65	0.78	0.9	1.02	1.15	1.27	1.4	0.99	1.04	1.08	1.12	1.16	1.21	0.54	0.63	0.74	1.72	1.84	1.97	3.27	
Max Vel (ft/s):	0	2.19	2.82	3.17	3.13	3.6	3.33	3.78	3.64	3.6	3.78	3.74	3.26	3.68	3.9	3.46	3.35	2.73	2.61	2.14	2.24	2.64	3.01	1.66	2.09	
Max Depth (ft):	0.01	0.03	0.04	0.04	0.05	0.06	0.07	0.07	0.07	0.08	0.08	0.09	0.08	0.07	0.07	0.08	0.09	0.1	0.06	0.08	0.08	0.13	0.12	0.18	0.21	

											Road P	lot Summary	Table (East S	Side)											
Node ID:	Inlet-existing-03	3 CEI_EX-2	Jun-R2-R	Jun-R5-R	CDI-E1	Jun-R7-R	6/4/2022	CDI-E2	Jun-R9-R	Jun-R10-R	Jun-R11-R	Jun-R12-R	Jun-R13-R	Jun-R14-R	Jun-R15-R	Jun-R16-R	Jun-R17-R	Jun-R18-R	Jun-R19-R	CDI-E3	Jun-R21-R	Jun-R22-R	Jun-R23-R	Jun-R24-R	CDI-105E
Rim (ft):	5552.53	5550.98	5542.63	5537.12	5530.18	5523.66	5519	5518.4	5512.11	5507.16	5501.07	5496.18	5491.94	5487.45	5483.51	5478.55	5472.8	5468.84	5465.36	5462.75	5461	5459.1	5457.34	5456.75	5456.15
Invert (ft):	5548.86	5546.81	5542.63	5537.12	5526.18	5523.66	5519	5514.4	5512.11	5507.16	5501.07	5496.18	5491.94	5487.45	5483.51	5478.55	5472.8	5468.84	5465.36	5459.25	5461	5459.1	5457.34	5456.75	5451.13
Min Pipe Cover (ft):			0	0		0	0		0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	
Max HGL (ft):	5549	5547.19	5542.66	5537.23	5527.92	5523.74	5519.12	5516.23	5512.13	5507.19	5501.11	5496.23	5492	5487.52	5483.58	5478.62	5472.88	5468.93	5465.46	5462.85	5461.03	5459.15	5457.42	5456.83	5456.23
Link ID:	Link-Road-3	ink-Road-2	Link-R5-R	Link-R6-R	Link-R7-R	Link-R8-R	Link-R8-R-2	Link-R9-R	Link-113	Link-R11-R	Link-R12-R	Link-R13-R	Link-R14-R	Link-R15-R	Link-R16-R	Link-R17-R	Link-R18-R	Link-R19-R	Link-R20-R	Link-R21-R	Link-R22-R	Link-R23-R	Link-R24-R	Link-R25-R	
Length (ft):	121.88	154.37	119.24	118.47	119.86	107.84	9.54	114.66	117.96	117.63	118.31	116.12	114.27	118.54	118.03	118	117.41	118.13	114.56	116.52	118.43	118.68	118.26	92.6	
Dia (in):	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	
Slope (ft/ft):	0.0127	0.0541	0.0462	0.0586	0.0544	0.0432	0.0629	0.0549	0.042	0.0518	0.0413	0.0365	0.0393	0.0332	0.042	0.0487	0.0337	0.0295	0.0228	0.015	0.016	0.0148	0.005	0.0065	
Up Invert (ft):	5552.53	5550.98	5542.63	5537.12	5530.18	5523.66	5519	5518.4	5512.11	5507.16	5501.07	5496.18	5491.94	5487.45	5483.51	5478.55	5472.8	5468.84	5465.36	5462.75	5461	5459.1	5457.34	5456.75	
Dn Invert (ft):	5550.98	5542.63	5537.12	5530.18	5523.66	5519	5518.4	5512.11	5507.16	5501.07	5496.18	5491.94	5487.45	5483.51	5478.55	5472.8	5468.84	5465.36	5462.75	5461	5459.1	5457.34	5456.75	5456.15	
Max Q (cfs):	0.01	0.01	0.15	2.93	1.09	1.21	3.64	0	0.12	0.25	0.37	0.5	0.62	0.74	0.87	0.99	1.11	1.24	1.36	0	0.12	0.25	0.37	0.5	
Max Vel (ft/s):	0	0	2.19	5.41	4.04	3.89	5.85	0	2.03	2.57	2.8	2.89	3.16	3.07	3.48	3.79	3.47	3.38	3.13	0	1.39	1.73	1.29	1.53	
Max Depth (ft):	0.01	0	0.03	0.11	0.07	0.08	0.12	0	0.02	0.03	0.04	0.05	0.06	0.07	0.07	0.07	0.08	0.09	0.1	0	0.03	0.05	0.08	0.08	

					Propos	ed Stormw	ater Netwo	ork Plot Sum	mary Table)					
Node ID:	MH-1	MH-2	MH-3	MH-4	MH-5	MH-6	MH-7	MH-8	MH-9	MH-10	MH-11	MH-12	MH-13	CDI-105E	MH-105
Rim (ft):	5535.5	5530	5520.4	5518	5508.25	5495.5	5484.9	5474	5467.5	5464.3	5463.75	5459.5	5456.5	5456.15	5455.57
Invert (ft):	5531.5	5525.29	5516	5513.68	5502.75	5491.26	5481.44	5471.42	5462.98	5460.8	5458.11	5455.59	5452	5451.13	5444.02
Min Pipe Cover (ft):	2	2.71	2.4	2.32	3.5	2.24	1.46	0.58	2.02	1.4	3.14	1.41	2		8.55
Max HGL (ft):	5531.82	5525.66	5516.56	5514.38	5503.56	5492.09	5482.38	5472.36	5464.52	5462.34	5459.83	5457.44	5453.85	5456.23	5446.05
Link ID:	Link-1	Link-2	Link-3	Link-4	Link-5	Link-6	Link-7	Link-8	Link-9	Link-10	Link-11	Link-12	Link-13	DS-105A	
Length (ft):	90.56	200.2	39.8	205.98	288.8	275.36	257.14	184.74	98.17	90.68	224.63	285.88	57.91	109	
Dia (in):	24	24	24	24	24	24	24	24	24	24	30	30	30	24	
Slope (ft/ft):	0.0686	0.0464	0.0583	0.0531	0.0398	0.0357	0.039	0.043	0.0222	0.0297	0.0112	0.0126	0.0133	0.0652	
Up Invert (ft):	5531.5	5525.29	5516	5513.68	5502.75	5491.26	5481.44	5471.42	5462.98	5460.8	5458.11	5455.59	5452	5451.13	
Dn Invert (ft):	5525.29	5516	5513.68	5502.75	5491.26	5481.44	5471.42	5463.48	5460.8	5458.11	5455.59	5452	5451.23	5444.02	
Max Q (cfs):	1.26	3.21	8.06	11.82	13.35	13.35	17.37	17.37	27.45	29.27	30.76	35.65	35.65	39.9	
Max Vel (ft/s):	6.39	7.95	11.22	12.1	11.26	10.82	11.99	12.43	10.57	12.09	8.55	9.17	9.4	17.7	
Max Depth (ft):	0.23	0.37	0.56	0.7	0.81	0.83	0.94	0.91	1.54	1.44	1.72	1.85	1.8	1.35	

			Existing	g US 64 St	ormwater	Network P	lot Summar	y Table				
Node ID:	MH-101	MH-102	MH-103	MH-104	MH-105	MH-106	MH-107	MH-108	MH-109	MH-110	MH-111	Out-06
Rim (ft):	5461.09	5460.71	5459.34	5456.2	5455.57	5450.22	5446.67	5442.78	5442.24	5442.37	5442.95	
Invert (ft):	5454.59	5454.09	5452.21	5445.65	5444.02	5438.7	5437.8	5436.21	5435.39	5435	5434.45	5433.67
Min Pipe Cover (ft):	4.5	4.62	5.13	7.55	8.55	7.52	4.87	2.57	2.85	3.37	4.5	
Max HGL (ft):	5456.1	5460.71	5454.21	5446.75	5446.05	5440.83	5440.13	5438.57	5437.81	5437.44	5436.89	5435.56
Link ID:	DS-101	DS-102	DS-103	DS-104	DS-105	DS-106	DS-107	DS-108	DS-109	DS-110	DS-111	
Length (ft):	75	273	328	74	273	153	317	171	77	112	68	
Dia (in):	24	24	24	36	30	48	48	48	48	48	48	
Slope (ft/ft):	0.0067	0.0069	0.02	0.022	0.0195	0.0059	0.005	0.0048	0.0051	0.0049	0.0115	
Up Invert (ft):	5454.59	5454.09	5452.21	5445.65	5444.02	5438.7	5437.8	5436.21	5435.39	5435	5434.45	
Dn Invert (ft):	5454.09	5452.21	5445.65	5444.02	5438.7	5437.8	5436.21	5435.39	5435	5434.45	5433.67	
Max Q (cfs):	20	22.19	22.19	27.19	67.09	72.09	77.09	77.09	82.09	82.09	82.09	
Max Vel (ft/s):	7.88	7.06	12.51	13.47	15.71	10.62	10.15	9.97	10.33	10.21	14.1	
Max Depth (ft):	1.51	2	1.1	0.98	2.03	2.13	2.33	2.36	2.42	2.44	1.89	